
NAVAL RESEARCH LABORATORY

Washington, DC 20375-5320

NRL/MR/6410-93-7192

LCPFCT – Flux-Corrected Transport

Algorithm for Solving Generalized

Continuity Equations

JAY P. BORIS

ALEXANDRA M. LANDSBERG

ELAINE S. ORAN

JOHN H. GARDNER

Laboratory for Computational Physics and Fluid Dynamics

April 16, 1993

Approved for public relase; distribution unlimited.

LCPFCT –
A Flux-Corrected Transport Algorithm

for Solving Generalized Continuity Equations

Jay P. Boris, Alexandra M. Landsberg, Elaine S. Oran and John H. Gardner

Laboratory for Computational Physics and Fluid Dynamics

U.S. Naval Research Laboratory, Washington DC

ABSTRACT

Flux-Corrected Transport has proven to be an accurate and easy to use algorithm to solve

nonlinear, time-dependent continuity equations of the type which occur in fluid dynamics,

reactive, multiphase, and elastic plastic flows, plasma dynamics, and magnetohydrody-

namics. This report updates and supersedes a previous report entitled “Flux-Corrected

Transport Modules for Solving Generalized Continuity Equations.” It can be used as a

user manual for the subroutines and test programs included in the appendices. The entire

LCPFCT library in its most recent form is presented and discussed in detail. There are, in

addition, discussions of more general topics such as the application of physical boundary

conditions, physical positivity and numerical diffusion which help to put the numerical

aspects of this subroutine library in context.

ii

TABLE OF CONTENTS

1. Introduction . 1

2. Numerical Background . 3

2.1 Positivity and Accuracy . 3

2.2 Principles of Flux-Corrected Transport 7

3. The LCPFCT Algorithm . 13

4. Split Step Applications of Monotone FCT Algorithms 20

4.1 One-Dimensional Solutions of the Coupled Equations 20

4.2 Multidimensions through Timestep Splitting 21

5. How To Use LCPFCT . 25

5.1 LCPFCT Variables in Common 25

5.2 Subroutines in LCPFCT . 28

5.3 Typical Calling Sequences . 37

5.4 Summary of the Major LCPFCT Library Routines 40

6. Boundary Conditions . 41

6.1 Representation of Boundary Conditions in LCPFCT 42

6.2 Boundary Conditions for Confined Domains 44

6.3 Continuitive Boundary Conditions for Unconfined Domains 50

7. Additional Information . 56

8. Test Problems . 60

8.1 Constant Velocity Convection – LCPFCT Test # 1 60

8.2 Progressing One Dimensional Gasdynamic Shock – LCPFCT Test # 2 . . 64

8.3 One-Dimensional Bursting Diaphragm Problem – LCPFCT Test # 3 . . . 66

8.4 Two-Dimensional Muzzle Flash Problem – LCPFCT Test # 4 69

9. Summary . 72

Acknowledgements . 73

References . 74

Appendices

A. Listing of LCPFCT Library Subroutines A1 – A20

B. Listing of Convection Test and Printed Results B1 – B7

C. Listing of Progressing Shock Program and Printed Results C1 – C9

D. Listing of Bursting Diaphragm Program and Results D1 – D11

E. Listing of Two Dimensional FAST2D Program and Results E1 – E8

iii

1. INTRODUCTION

This report explains and documents a group of subroutines for solving generalized conti-

nuity equations of the form

∂ρ

∂t
= − 1

rα−1

∂

∂r
(rα−1ρv)− 1

rα−1

∂

∂r
(rα−1D1) + C2

∂D2

∂r
+D3 . (1.1)

These subroutines, collectively referred to by the name of the main program, LCPFCT,

use one of the latest one-dimensional Flux-Corrected Transport (FCT) algorithms with

fourth-order phase accuracy and minimum residual diffusion. The program loops vectorize

to take full advantage of vector architectures and run equally well on scalar and superscalar

computers. The use of internal temporary memory is quite minimal, limited to about

thiry short one-dimensional arrays, and is arranged to maximize readability and efficient

program execution. A rather general capability to handle the source terms in Eq. (1) has

been provided so that coupled sets of multidimensional nonlinear continuity equations,

such as those for ideal compressible fluid dynamics and reactive flows, can be solved using

the routines presented here.

LCPFCT itself can treat one-dimensional, Cartesian, cylindrical, or spherical , and

generalized nozzle coordinates. A flexible set of boundary conditions for each equation can

be selected by the appropriate choice of the arguments to the subroutine calls. In addition

to inflow, outflow, and reflecting wall conditions in several coordinate systems, there is an

option for periodic boundary conditions. Using this version of LCPFCT, multidimensional

problems may be solved by timestep-splitting techniques. The computational grid can be

nonuniform and, in addition, can move during the course of a timestep, enabling us to do

Lagrangian and sliding rezone calculations. The programs produce a positive, conservative

interpolation when the fluid velocity is zero but the grid moves, which is an important test

of the gridding.

The important properties of FCT are that it is a high-order, monotone, conservative,

positivity preserving algorithm. This means that the algorithm is accurate and resolves

steep gradients, allowing grid scale numerical resolution. When a convected quantity such

as a density is initially positive, it remains positive and no new maxima or minima are

introduced due to numerical errors in the convection process. These are properties that are

extremely important for most problems of practical interest. Table 1 presents an overview

of FCT algorithm developments. More background, description, and historical material

may be found in Boris (1971), Boris and Book (1976), Book and Boris (1981), and Oran

and Boris (1987).

The material presented here is an update and expansion of the ETBFCT programs

described by Boris (1976). There are several fundamental differences between LCPFCT

1

Table 1.1 History of Development of FCT Algorithms

1971 Basic nonlinear, monotone algorithm (Boris)

1976 Adaptation of FCT to general finite-difference algorithms (Boris and Book)

1976 Optimization for vector and parallel processing (Boris)

1979 Fully multidimensional FCT and generalization to use with

arbitrary high- and low-order algorithms (Zalesak)

1985 Finite-Element FCT on triangle-based grids (Löhner)

1986 Implicit FCT (Patnaik)

1991 Arbitrary nonorthogonal FCT (Fyfe and Patnaik)

1992 General curved boundary FCT (Landsberg and Boris)

and ETBFCT. First, in LCPFCT, variables are defined on cell centers instead of cell

vertices, a relatively small change. Second, ETBFCT was written as a single subprogram,

with a number of entries whereas LCPFCT is a series of independent subroutines which

communicate through named common blocks. Finally, additional subroutines have been

added to increase the flexibility and ease of using LCPFCT.

LCPFCT is written in Fortran. Complete program listings and four test programs are

given in the appendices. Appendix A contains a complete listing of the series of subrou-

tines which in their entirety constitute LCPFCT. Appendix B contains a constant velocity

convection test problem, LCPFCT Test #1, with the driver program and sample results

in tabulated form that can be used to check the code. Appendix C contains a progressing

shock test problem, LCPFCT Test #2, and selected outputs for comparison. Appendix C

also has an interface program called GASDYN which combines the calls to source generat-

ing routines, velocity and boundary condition routines, and the basic continuity equation

module LCPFCT. GASDYN couples the set of nonlinear continuity equations to solve

gasdynamics one row at a time and is used in LCPFCT Tests #2, #3, and #4. Appendix

D contains the program and selected outputs for the one-dimensional bursting diaphragm

problem, LCPFCT Test #3. This example illustrates the variable grid features of the

LCPFCT routines by switching into an expanding system of grid coordinates to capture

the expected similarity solution. Appendix E contains a two-dimensional “muzzle flash”

test problem, LCPFCT Test #4, with sample output that can be used to verify the users

version of the code. This fourth test illustrates the use of simple outflow boundary condi-

tions and shows how to construct programs with relatively complex geometries.

2

2. NUMERICAL BACKGROUND

2.1 Positivity and Accuracy

Good resolution of steep gradients is important in many problems we need to solve. It is

important in reactive flows, where the gradients at detonation fronts, flame fronts, and at

interfaces in multiphase flows must be accurately represented. Flame speeds depend on

steep species gradients, as do the local energy release profiles. It is important in simulations

of shocks, particularly when they collide or interact with other steep gradients. High

resolution of shear flows is also very important since vortex stretching and shear steepening

both produce steep local gradients in the flow.

Positivity is a property satisfied by the continuity equation. When the density ρ(r, t)

in Eq. (1.1) is everywhere positive and the source terms are zero, it is a mathematical

consequence of the continuity equation and an obvious physical property of the flow that

the density can never become negative anywhere – regardless of the velocity field specified.

To retain this mathematical and physical property in numerical convection through an

Eulerian grid involves a certain amount of numerical diffusion. This numerical diffusion

arises as a consequence of the physical requirements that the profiles being convected

remain stable while remaining positive. Numerical diffusion is an inherent problem in

Eulerian convection, and unless controlled, it can invalidate numerical calculations using

linear algorithms unless they have very fine computational meshes.

Figure 2.1 shows how numerical diffusion enters the first-order upwind algorithm (see,

for example, Oran and Boris, 1987). Consider a discontinuity, at x = 0 at time t = 0, that

moves at a constant velocity from left to right. The velocity, v, the timestep, ∆t, and the

computational cell size, ∆x, are chosen such that v∆t/∆x = 1/3 in the figure. This means

that the actual physical discontinuity travels one third of a cell per timestep. The solution

obtained using the linear upwind algorithm (sometimes called donor-cell) is given by the

solid line. The “upwind” finite-difference formula is a simple linear interpolation

ρn+1
i = ρni −

v∆t

∆x
(ρni − ρni−1) . (2.1)

If the {ρi} are positive at some time t = n ∆t and∣∣∣∣v∆t

∆x

∣∣∣∣ ≤ 1 (2.2)

in each cell, the new density values {ρn+1
i } at time t = (n + 1)∆t are also positive. The

price for guaranteed positivity in this linear algorithm is a severe nonphysical spreading of

the discontinuity which should be located at x = vt.

3

X = 0 4 X∆- X∆ 2 X∆ X∆ 3 X∆

t = 0 t∆

t = 3 t∆

t = 2 t∆

t = 1 t∆

Figure 2.1 The results of convecting a discontinuity with the highly diffusive, first order
upwind algorithm. The velocity is 1/3 of a cell per timestep. The solid lines are the exact
profile, which coincides with the numerical solution at t = 0. The heavy dashed line is the
numerical solution. Note the diffusive precursor moves at once cell per timestep regardless
of the speed of the flow.

In the example shown in Figure 2.1, the initial discontinuity erodes rapidly. This

process looks like physical diffusion, but it arises here from numerical errors. The numerical

diffusion occurs because material that has just entered a cell, and should still be near the

left boundary, is smeared over the whole cell when the transported fluid elements are

interpolated linearly back onto the Eulerian grid. Higher-order approximations to the

convective derivatives are required to reduce this diffusion.

Now consider a three-point explicit finite-difference formula for advancing {ρni } one

timestep to {ρn+1
i },

ρn+1
i = aiρ

n
i−1 + biρ

n
i + ciρ

n
i+1 . (2.3)

This general form includes the first-order upwind algorithm and other common algorithms.

4

If ∆x and ∆t are constants, Eq. (2.3) can be rewritten in a form that guarantees conser-

vation,

ρn+1
i = ρni −

1

2

[
εi+ 1

2
(ρni+1 + ρni)− εi− 1

2
(ρni + ρni−1)

]
+
[
νi+ 1

2
(ρni+1 − ρni)− νi− 1

2
(ρni − ρni−1)

]
,

(2.4)

where

εi+ 1
2
≡ vi+ 1

2

∆t

∆x
. (2.5)

The {νi+ 1
2
} are nondimensional numerical diffusion coefficients which appear as a conse-

quence of considering adjacent grid points. Conservation of ρ in Eq. (2.4) also constrains

the coefficients ai, bi, and ci in Eq. (2.3) by the condition

ai+1 + bi + ci−1 = 1 . (2.6)

Positivity of {ρn+1
i } for all possible positive profiles {ρni } requires that {ai}, {bi}, and {ci}

be positive for all i.

Matching corresponding terms in Eqs. (2.4) and (2.3) gives

ai ≡ νi− 1
2

+
1

2
εi− 1

2
,

bi ≡ 1− 1

2
εi+ 1

2
+

1

2
εi− 1

2
− νi+ 1

2
− νi− 1

2
,

ci ≡ νi+ 1
2
− 1

2
εi+ 1

2
.

(2.7)

If the {νi+ 1
2
} are positive and large enough, they ensure that the {ρn+1

i } are positive. The

positivity conditions derived from Eqs. (2.7) are

|εi+ 1
2
| ≤ 1

2
,

1

2
≥ νi+ 1

2
≥ 1

2
|εi+ 1

2
| ,

(2.8)

for all i. Thus the condition in Eq. (2.8) for positivity leads directly to numerical diffusion

in addition to the desired convection,

ρn+1
i = ρni + νi+ 1

2
(ρni+1 − ρni)− νi− 1

2
(ρni − ρni−1)

+ convection ,
(2.9)

where Eq. (2.8) holds. This first-order numerical diffusion rapidly smears a sharp discon-

tinuity. Godunov has shown rather generally that linear second-order algorithms cannot

5

uphold physical positivity. If algorithms are used with νi+ 1
2
< 1

2 |εi+ 1
2
|, positivity is not

necessarily destroyed but can no longer be guaranteed. In practice, the positivity condi-

tions are almost always violated by strong shocks and discontinuities unless the inequal-

ities stated in Eq. (2.8) hold. Nevertheless, the numerical diffusion implied by Eq. (2.8)

is unacceptable. The diffusion coefficient {νi+ 1
2
} cannot be zero, however, because the

explicit three-point formula, Eq. (2.4), is subject to a numerical stability problem if it is

zero. Finite-difference methods which are higher than first order, such as the Lax-Wendroff

(1964) methods, reduce the numerical diffusion but sacrifice assured positivity. This appar-

ent dilemma can only be resolved by using a nonlinear method to integrate the continuity

equations.

To examine the problem of stability and positivity, we consider a stability analysis.

Consider convecting test functions of the form

ρni ≡ ρno e
iiβ , (2.10)

where

β ≡ k ∆x =
2π ∆x

λ
, (2.11)

and i indicates
√
−1. Substituting this solution into Eq. (2.4) gives

ρn+1
o = ρno

[
1− 2ν(1− cosβ)− iε sinβ

]
, (2.12)

where we assume that
{νi+ 1

2
} = ν

{εi+ 1
2
} = ε .

(2.13)

The exact theoretical solution to this linear problem is

ρn+1
o |exact = ρno e

−ikv∆t . (2.14)

Therefore the difference between the exact solution and Eq. (2.12) is the numerical error

generated at each timestep.

The amplification factor was defined as

A ≡ ρn+1
o

ρno
, (2.15)

and an algorithm is always linearly stable if

|A|2 ≤ 1 . (2.16)

6

From Eq. (2.12),

|A|2 = 1− (4ν − 2ε2)(1− cosβ) + (4ν2 − ε2)(1− cosβ)2 , (2.17)

which ought to be less than unity for all permissible values of β between 0 and π. In general,

ν > 1
2ε

2 ensures stability of the linear convection algorithm for any Fourier harmonic of

the disturbance, provided that ∆t is chosen so that |ε| ≤ 1. This stability condition is a

factor of two less stringent than the positivity conditions |ε| ≤ 1
2 . When ν > 1

2 , there are

combinations of ε and β where |A|2 > 1, for example ε = 0 with β = π. Thus the range of

acceptable diffusion coefficients is quite closely prescribed,

1

2
≥ ν ≥ 1

2
|ε| ≥ 1

2
ε2 . (2.18)

Even the minimal numerial diffusion required for linear stability, ν = 1
2ε

2, may be

substantial when compared to the physically correct diffusion effects such as thermal con-

duction, molecular diffusion, or viscosity. Figure 2.2 shows the first few timesteps from the

same test problem as in Figure 2.1, but using ν = 1
2ε

2 rather than ν = 1
2ε required for pos-

itivity. The profile spreads only one third as much as in the previous case where positivity

was assured linearly, but a numerical precursor still reaches two cells beyond the correct

discontinuity location. Furthermore, the overshoot between x = −∆x and x = 0 in Fig-

ure 2.2 is a consequence of underdamping the solution. The loss of monotonicity indicated

by the overshoot can be as bad as violating positivity. A new, nonphysical maximum in

ρ has been introduced into the solution. When the convection algorithm is stable but not

positive, the numerical diffusion is not large enough to mask either numerical dispersion or

the Gibbs phenomenon arising near sharp gradients so the solution is no longer necessarily

monotone. New ripples, that is, new maxima or minima, are introduced numerically.

2.2 Principles of Flux-Corrected Transport

From the discussion above and the work of Godunov (1959), the requirements of positivity

and accuracy seem to be mutually exclusive. Nonlinear monotone methods were invented

to circumvent this dilemma. These methods use the stabilizing ν = 1
2ε

2 diffusion where

monotonicity is not threatened, and increase ν to values approaching ν = 1
2 |ε| when re-

quired to assure that the solution remains monotone. Different criteria are imposed in

the same timestep at different locations on the computational grid according to the local

profiles of the physical solution. The dependence of the local smoothing coefficients ν on

the solution profile makes the overall algorithm nonlinear.

To prevent negative values of ρ which could arise from dispersion or Gibbs errors, a

minimum amount of numerical diffusion must be added to assure positivity and stability

7

X = 0

t = 2 t∆

t = 2 t∆

t = 1 t∆

t = 0 t∆

 4 X∆3 X∆2 X∆ X∆- X∆

Figure 2.2 Results of convecting a discontinuity using an algorithm with enough diffusion
to maintain stability, but not enough to hide the effects of dispersion. Note the growing
nonphysical overshoot behind the actual discontinuity and the diffusive numerical precursor
at times after t = 0 in the numerical solution (heavy dashed line).

at each timestep. We write this minimal diffusion as

ν ≈ |ε|
2

(c+ |ε|) (2.19)

where c is a clipping factor, 0 ≤ c ≤ 1 − |ε|, that controls how much extra diffusion must

be added to ensure positivity over that required for stability, ε2/2. In the vicinity of steep

discontinuities, c ≈ 1 − |ε|, and in smooth regions away from local maxima and minima,

c ≈ 0.

Over the last 20 years, monotone algorithms have been shown to be a reliable, robust

way to calculate convection. The first specifically monotone, positivity-preserving tech-

nique was the Flux-Corrected Transport (FCT) algorithm developed at NRL, as discussed,

8

for example, in Boris (1971) and Boris and Book (1973, 1976). Other early monotone meth-

ods employing nonlinear flux limiters were proposed by van Leer (1973, 1979), and Harten

(1974, 1983). There has been extensive work on monotone methods during the last ten

years, some of which is described in the following references, Colella and Woodward (1984)

and Woodward and Colella (1984), Baer (1986), and Rood (1987). A characteristic of

these methods generally distinguishing them from FCT is their use of a Riemann solver

to determine the fluxes of mass momentum and energy for gas dynamics. Their use of

nonlinear limiting formulae on these fluxes to calculate the clipping factor c above, is very

much like FCT. Research on monotone methods related to the FCT approach without a

Reiman solver has also continued to the present, for example by Odstrcil (1990), Leonard

and Niknafs (1990), Nessyahu and Tadmor (1990), and Lafon and Osher (1992). Zalesak

(1979, 1981), Löhner (1987), Patnaik, et al. (1987), DeVore (1989, 1991), Fyfe and Patnaik

(1991), and Landsberg and Boris (1992) have developed various generalizations and modi-

fications of FCT designed to improve its performance in multidimensions and to represent

complex geometry.

We now rewrite the explicit three-point approximation to the continuity equation

given in Eq. (2.3) to determine provisional values, {ρ̃i}, from the previous timestep or

“old” values, {ρoi},
ρ̃i = aiρ

o
i−1 + biρ

o
i + ciρ

o
i+1 . (2.20)

Again, Eq. (2.6) must be satisfied for conservation and {ai}, {bi}, and {ci} must all be

greater than or equal to zero to assure positivity.

Equation (2.20), in conservative form, again becomes

ρ̃i = ρoi −
1

2

[
εi+ 1

2
(ρoi+1 + ρoi)− εi− 1

2
(ρoi + ρoi−1)

]
+
[
νi+ 1

2
(ρoi+1 − ρoi)− νi− 1

2
(ρoi − ρoi−1)

]
= ρoi −

1

∆x

[
fi− 1

2
− fi+ 1

2

]
.

(2.21)

The values of variables at interface i + 1
2 are averages (possibly unequally weighted) of

values at cells i + 1 and i, and the values at i − 1
2 are averages of values at cells i and

i− 1. At every cell i, the ρ̃i differs from ρoi as a result of the inflow and outflow fluxes of

ρ, denoted by {fi± 1
2
} across the cell boundaries. The fluxes are successively added and

subtracted along the array of densities {ρoi } so that the overall conservation of ρ is satisfied

by construction. Summing all the provisional densities gives the sum of the old densities.

The expressions involving εi± 1
2

are called the convective fluxes.

By comparing Eq. (2.21) and (2.20), we obtain the conditions relating the a, b, and c’s

to the ε’s and ν’s, essentially as in Eq. (2.7). In Eq. (2.21), the {νi+ 1
2
} are dimensionless

9

diffusion coefficients included to ensure positivity of the provisional values {ρ̃i}. The

positivity condition for the provisional {ρ̃i} is given in Eq. (2.8).

However, after Eq. (2.20) is imposed, two of the three coefficients in Eq. (2.21) are still

to be determined. One of these sets of coefficients must ensure an accurate representation

of the mass flux terms. Thus

εi+ 1
2

= vi+ 1
2

∆t

∆x
, (2.22)

where, {vi+ 1
2
} is the fluid velocity approximated at the cell interfaces. The other set of

coefficients, {νi+ 1
2
}, are chosen to maintain positivity and stability.

The provisional values ρ̃i must be strongly diffused to ensure positivity. If νi+ 1
2

=
1
2 |εi+ 1

2
| in Eq. (2.8), we have the diffusive, first-order upwind algorithm. A correction in

FCT to remove this strong diffusion involves an additional antidiffusion stage,

ρni = ρ̃i − µi+ 1
2
(ρ̃i+1 − ρ̃i) + µi− 1

2
(ρ̃i − ρ̃i−1) , (2.23)

in the algorithm to get the new values of {ρni }. Here {µi+ 1
2
} are positive antidiffusion

coefficients. Antidiffusion reduces the strong diffusion implied by Eq. (2.8), but also rein-

troduces the possibility of negative values or nonphysical overshoots in the “corrected”

profile. If the values of {µi+ 1
2
} are too large, the new solution {ρni } will be unstable

numerically.

To obtain a positivity-preserving algorithm, we modify the antidiffusive fluxes in

Eq. (2.23) by a process that we call flux correction. The antidiffusive fluxes,

fadi+ 1
2
≡ µi+ 1

2
(ρ̃i+1 − ρ̃i) , (2.24)

appearing in Eq. (2.23) are corrected (limited) as described below to ensure positivity and

stability.

The biggest choice of the antidiffusion coefficients {µi+ 1
2
} that still guarantees posi-

tivity linearly is

µi+ 1
2
≈ νi+ 1

2
− 1

2
|εi+ 1

2
| . (2.25)

However, this is not large enough. To reduce the residual diffusion (ν − µ) even further,

the flux correction must be nonlinear, depending on the actual values of the density profile

{ρ̃i}.

The idea behind the nonlinear flux-correction formula is as follows: Suppose the den-

sity ρ̃i at grid point i reaches zero while its neighbors are positive. Then the second

derivative is locally positive and any antidiffusion would force the minimum density value

10

ρ̃i = 0 to be negative. Because this cannot be allowed on physical grounds, the antidiffusive

fluxes should be limited so minima in the profile are made no deeper by the antidiffusive

stage of Eq. (2.23). Because the continuity equation is linear, we could equally well solve

for {−ρni }. Hence, we also must require that antidiffusion not make the maxima in the

profile any larger. These two conditions form the basis for FCT and a central role in other

monotone methods. The antidiffusion stage should not generate new maxima or minima

in the solution, nor accentuate already existing extrema.

This qualitative idea of a nonlinear filtering can be quantified. The new values {ρni }
are given by

ρni = ρ̃i − fci+ 1
2

+ fci− 1
2
, (2.26)

where the corrected fluxes {fc
i+ 1

2

} satisfy

f ci+ 1
2
≡ S ·max

{
0, min

[
S · (ρ̃i+2 − ρ̃i+1), |fadi+ 1

2
|, S · (ρ̃i − ρ̃i−1)

]}
. (2.27)

Here |S| = 1 and sign S ≡ sign (ρ̃i+1 − ρ̃i).

To see what this flux-correction formula does, assume that (ρ̃i+1 − ρ̃i) is greater than

zero. Then Eq. (2.27) gives either

fci+ 1
2

= min
[
(ρ̃i+2 − ρ̃i+1), µi+ 1

2
(ρ̃i+1 − ρ̃i), (ρ̃i − ρ̃i−1)

]
or

fci+ 1
2

= 0 ,
(2.28)

whichever is larger. The “raw” antidiffusive flux, fad
i+ 1

2

given in Eq. (2.24), always tends

to decrease ρni and to increase ρni+1. The flux-limiting formula ensures that the corrected

flux cannot push ρni below ρni−1, which would produce a new minimum, or push ρni+1 above

ρni+2, which would produce a new maximum. Equation (2.27) is constructed to take care

of all cases of sign and slope.

The formulation of an FCT transport algorithm therefore consists of the following

four sequential stages:

1. Compute the transported and diffused values ρ̃i from Eq. (2.21), where the νi+ 1
2
>

1
2 |εi+ 1

2
| to satisfy monotonicity. Add in any additional source terms, for example,

−∇P .

2. Compute the raw antidiffusive fluxes from Eq. (2.24).

3. Correct or limit these fluxes using Eq. (2.27) to assure monotonicity.

4. Perform the indicated antidiffusive correction through Eq. (2.26).

11

Stages 3 and 4 are the new components introduced by FCT. There are many modifications

of this prescription that accentuate various properties of the solution. Some of these are

summarized in Boris and Book (1976), by Zalesak (1979, 1981), and more recently in Book,

et al. (1991).

12

3. THE LCPFCT ALGORITHM

We now discuss the program LCPFCT, implemented as a Fortran subroutine for solving the

continuity equation. LCPFCT is used in combination with calls to a number of auxiliary

subroutines for defining the computational grid, the velocity dependent factors, the various

source terms in the equations being solved, and the boundary conditions. This is an

updated version of the program ETBFCT (Boris, 1976) and is available on request. The

programs are short and complete program listings also appear in the appendices.

LCPFCT implements an explicit solution of the general one-dimensional continuity

equation, Eq. 1.1, which is reprinted just below,

∂ρ

∂t
= − 1

rα−1

∂

∂r
(rα−1ρv)− 1

rα−1

∂

∂r
(rα−1D1) + C2

∂D2

∂r
+D3. (1.1)

The current implementation includes provisions for a spatially variable and moving grid.

Additional source terms are included by means of the terms D1, D2, and D3. Different

one-dimensional geometries may be selected through variation of an input integer α where

α = 1 is Cartesian or planar geometry, α = 2 is cylindrical geometry, and α = 3 is

spherical geometry. By choosing α = 4 and writing problem-specific code defining cell

interface areas and volumes, the user can define other useful coordinate systems such as

elliptical coordinates or various nozzle geometries.

Figure 3.1 shows a one-dimensional geometry in which the fluid is constrained to move

along a tube. The one dimensionality is based on the assumption that the fluid variables

vary very little in the direction perpendicular to the axis of the tube. The variable r

measures distance along the tube. The velocity vf is the fluid velocity along r. The points

at the interfaces between cells are the finite-difference grid points. The interface positions

at the beginning of a numerical timestep are denoted by {ro
i+ 1

2

}, where i = 0, 1, . . . , N .

At the end of a timestep ∆t, the interfaces are at {rn
i+ 1

2

}, where

rni+ 1
2

= roi+ 1
2

+ vg
i+ 1

2

∆t , (3.1)

The quantities {vg
i+ 1

2

} are the grid velocities, the average velocities of the cell interfaces

during the interval ∆t. Figure 3.1 also indicates the basic cell volumes {Λi}, and the

interface areas, {Ai+ 1
2
}. The interface areas are assumed to be perpendicular to the tube

and hence to the velocities {vf
i+ 1

2

}. The change in the total amount of a convected quantity

in a cell is the algebraic sum of the fluxes of that quantity into and out of the cell through

the interfaces. Both the cell volumes {Λi} and the interface areas {Ai+ 1
2
} that bound the

cells have to be calculated consistently using new and old grid positions.

13

A

A

r1/2

i-1/2

i+1/2
N-1

N

1

2

rN+1/2

i-1Λ
i

Λ
i+1

Λ

Figure 3.1 Geometry and layout of the LCPFCT finite volume grid. Physical variables are
specified as cell averages in the volumes defined by the locations of the interfaces between
cells and the variation of the cross-sectional area with distance between the interfaces.

The positions of the cell centers are denoted {ro,ni } and may be related to the cell

interface locations by

ro,ni =
1

2
[ro,n
i+ 1

2

+ ro,n
i− 1

2

] , i = 1, 2 , ..., N . (3.2)

The superscripts o or n indicates the old and new grid at the beginning and the end of

the timestep. The cell centers could also be computed as some weighted average of the

interface locations. These locations, rni and roi are not needed for gasdynamics but may be

useful for calculating diffusion terms added to Eq. (1.1). The boundary interface positions,

ro,n1
2

and ro,n
N+ 1

2

, have to be specified by the user. For example, they might be the location of

bounding walls. Then by programming r 1
2

as a function of time and forcing the adjacent

grid points to move correspondingly, one can simulate the effect of a piston or flexible

container.

To calculate convective transport, the first term on the right hand side of Eq. (1.1),

we need the flux of fluid through each interface as it moves from ro
i+ 1

2

to rn
i+ 1

2

during a

timestep. The velocities of the fluid are assumed known at the cell centers and the velocity

14

of the fluid at the interfaces is given by

vf
i+ 1

2

=
1

2
(vfi+1 + vfi) , i = 1, 2, ..., N − 1 . (3.3)

Again, other weighted averages are possible but this choice works well for all three geome-

tries.

Because the fluxes out of one cell into the next are needed on the interfaces, we define

∆vi+ 1
2

= vf
i+ 1

2

− vg
i+ 1

2

, i = 1, 2, ..., N − 1 . (3.4)

The boundary interface fluid velocities ∆v 1
2

and ∆vN+ 1
2

are calculated using the locations,

ro,n1
2

and ro,n
N+ 1

2

, and the two endpoint velocities vf1
2

and vf
N+ 1

2

. These velocities must also be

specified as part of the problem definition because they require information from beyond

the computational domain. They become part of the user-specified boundary conditions.

Then

∆v 1
2

= vf1
2

−
rn1

2

− ro1
2

∆t
,

∆vN+ 1
2

= vf
N+ 1

2

−
rn
N+ 1

2

− ro
N+ 1

2

∆t
.

(3.5)

To determine the flux on the cell boundaries, we also need the density at the cell

interfaces. This is taken as

ρoi+ 1
2

=
1

2
[ρoi+1 + ρoi] , i = 1, 2 , ..., N − 1 . (3.6)

Weighted averages other than the simple one expressed in Eq. (3.6) are possible for this

definition. The formulas
ρo = S1ρ1 + V1,

ρN+1 = SNρN + VN ,
(3.7a)

are used to calculate densities at fictitious guard cells, here indexed 0 and N+1, which are

imagined to exist beyond the computational domain. The quantities S1 and SN are slope

multiplicative factors used to specify the multiplier of the value just inside the boundary

to be used in the guard cells. The quantities V1 and VN are user specified additive values

to augment the portion of the guard cell variable determined from the cell just inside the

computational domain. The use of uppercase V here should not be confused with the use

of a lowercase v elsewhere to denote the fluid velocity. The letters S and V are prefixed

to the corresponding variable names in the computer programs to denote the boundary

condition terms for the corresponding guard cell variables.

15

For specifying periodic boundary conditions, a logical argument in the calling sequence

to LCPFCT, PBC , is set to .true.. This corresponds to the guard cell definitions

ρo = ρN ,

ρN+1 = ρ1 .
(3.7b)

The variable PBC must be .false. for all other cases. Both S’s and V’s are ignored when

periodic boundaries are selected. Section 6 contains a more complete discussion of how the

boundary conditions are implemented. These formulas are specified in this way because

they have to be re-evaluated several times using the updated ρ values during the several

stages of FCT. Thus ρ1−ρo and ρN+1−ρN are always defined at the first and last interfaces

through all stages of the FCT proceedure, and Eq. (3.7) gives

ρo1
2

=

(
1

2
+

1

2
S1

)
ρo1 +

1

2
V1 ,

ρoN+ 1
2

=

(
1

2
+

1

2
SN

)
ρoN +

1

2
VN .

(3.8a)

or for periodic boundary conditions

ρo1
2

=
1

2
(ρo1 + ρoN),

ρoN+ 1
2

=
1

2
(ρoN + ρo1).

(3.8b)

Using these definitions, the convective transport part of the continuity equation is

written as

Λoi ρ
∗
i = Λoi ρ

o
i −∆t ρoi+ 1

2
Ai+ 1

2
∆vi+ 1

2
+ ∆t ρoi− 1

2
Ai− 1

2
∆vi− 1

2
,

i = 1, 2, ..., N .
(3.9)

The left side, Λoi ρ
∗
i , has not yet undergone the compression or expansion that changes Λoi to

Λni . The source terms have not yet been incorporated and the diffusion and antidiffusion

portions of flux correction still have to be included.

The source terms in Eq. (1.1) are added into Eq. (3.9),

Λoi ρ
T
i = Λoi ρ

∗
i +

1

2
∆t Ai+ 1

2
(D1,i+1 +D1,i)−

1

2
∆t Ai− 1

2
(D1,i +D1,i−1)

+
1

4
∆t C2,i(Ai+ 1

2
+Ai− 1

2
) (D2,i+1 −D2,i−1)

+ ∆t ΛoiD3,i , i = 2, ..., N − 1 .

(3.10)

16

The end values, at cells i = i1 and i = iN , are computed using Dk,I1− 1
2

and Dk,IN+ 1
2
, the

first and last interface values of D, which must be specifically specified by the user, in place

of the interface average at the boundaries. Other source terms can be added easily to the

formalism, but the three source terms in Eq. (1.1) are adequate to treat most important

applications.

The diffusion stage of this FCT algorithm also includes the cell volume change when

the grid is moving,

Λni ρ̃i = Λoi ρ
T
i + νi+ 1

2
Λi+ 1

2
(ρoi+1 − ρoi)

− νi− 1
2
Λi− 1

2
(ρoi − ρoi−1) , i = 1, 2, ..., N .

(3.11)

The quantities {ρ̃i} make up the transported-diffused density profile. The diffusion coef-

ficients can be chosen to reduce phase errors from second to fourth order. The interface-

averaged volumes {Λi+ 1
2
} multiply the {νi+ 1

2
} in Eq. (3.11) and are defined as

Λi+ 1
2

=
1

2
(Λni+1 + Λni) , i = 1, 2, ..., N − 1 . (3.12)

The boundary interface volumes are chosen as

Λ 1
2

= Λn1 ,

ΛN+ 1
2

= ΛnN .
(3.13)

The convection, additional source terms, compression, and diffusion have been broken

into the successive stages shown in Eqs. (3.9), (3.10), and (3.11) because we need to

compute the antidiffusive fluxes using {ρTi }. If the antidiffusive flux is computed using

{ρ̃i}, that is, after the diffusion has been added, the algorithm has residual diffusion both

when the grid is Lagrangian, vf = vg, and in the special case when both the grid and the

fluid are stationary. Therefore the transported but not diffused values, {ρTi } are used to

calculate the raw, uncorrected antidiffusive fluxes,

fadi+ 1
2

= µi+ 1
2
Λi+ 1

2
[ρTi+1 − ρTi] , i = 0, 1, ..., N . (3.14)

The antidiffusion is designed so that when the grid is Lagrangian and {∆vi+ 1
2
} vanishes

in Eq. (3.9),

Λni ρ
n
i = Λoi ρ

o
i . (3.15)

Substituting Eq. (3.9) and (3.10) into Eq. (3.11) in the Langrangian case with no sources

gives

Λni ρ̃i = Λoi ρ
o
i + νi+ 1

2
Λi+ 1

2
(ρoi+1 − ρoi)− νi− 1

2
Λi− 1

2
(ρoi − ρoi−1) , (3.16)

17

because ρTi = ρoi . The antidiffusion procedure, applied to Eq. (3.16), gives

Λni ρ
n
i = Λoi ρ

o
i + (νi+ 1

2
− µi+ 1

2
)Λi+ 1

2
(ρoi+1 − ρoi)

− (νi− 1
2
− µi− 1

2
)Λi− 1

2
(ρoi − ρoi−1) .

(3.17)

When the grid is Lagrangian, the desired result of Eq. (3.15) can be achieved as long as

νi+ 1
2

= µi+ 1
2
. (3.18)

Boris and Book (1976) explain that the choices

νi+ 1
2
≡ 1

6
+

1

3
ε2i+ 1

2
,

µi+ 1
2
≡ 1

6
− 1

6
ε2i+ 1

2
,

(3.19)

reduce the relative phase errors in convection on a locally uniform grid to fourth order.

By defining

εi+ 1
2
≡ Ai+ 1

2
∆vi+ 1

2

∆t

2

[
1

Λni
+

1

Λni+1

]
, i = 0, 1, ..., N , (3.20)

the diffusion and antidiffusion coefficients are automatically equal in the Lagrangian case.

Then Eqs. (3.19) are satisfied for the portion of the fluid motion that convects material

through the moving interfaces.

As in Eq. (2.27) above, the signed quantites {Si+ 1
2
} can be defined with the sign of

[ρ̃i+1 − ρ̃i] and magnitude unity. Using {fad
i+ 1

2

} from Eq. (3.14) as the raw antidiffusive

fluxes and {ρ̃i} from Eq. (3.11), the corrected antidiffusive flux is

f ci+ 1
2

= Si+ 1
2

max
{

0, min
[
|fadi+ 1

2
|, Si+ 1

2
Λni+1(ρ̃i+2 − ρ̃i+1),

Si+ 1
2
Λni (ρ̃i − ρ̃i−1)

]}
, i = 1, 2, ..., N − 1 .

(3.21)

For correcting the boundary fluxes fc1
2

and f c
N+ 1

2

, the min[..., ..., ...] term in Eq. (3.21)

contains only two terms. The correction coming from a difference reaching beyond the

boundary is simply dropped from the calculation except for periodic boundaries where a

periodic application of the differences is used. The result, {ρni }, is then computed as in

Eq. (2.26), where the corrected fluxes {fc
i+ 1

2

} replace {fad
i+ 1

2

}. The final density at the new

time is

ρni = ρ̃i −
1

Λni

[
fci+ 1

2
− fci− 1

2

]
. (3.22)

18

A few of the geometric variables used above have yet to be defined. The obvious choice

of volume elements, at the beginning and end of the timesteps, in Cartesian, cylindrical,

and spherical geometries are

Λo,ni =

[ro,n
i+ 1

2

− ro,n
i− 1

2

], Cartesian

π[(ro,n
i+ 1

2

)2 − (ro,n
i− 1

2

)2] cylindrical

4
3π[(ro,n

i+ 1
2

)3 − (ro,n
i− 1

2

)3] spherical .

(3.23)

The corresponding interface areas are

Ai+ 1
2

=

1 Cartesian

π[ro
i+ 1

2

+ rn
i+ 1

2

] cylindrical

4
3π[(ro

i+ 1
2

)2 + ro
i+ 1

2

rn
i+ 1

2

+ (rn
i+ 1

2

)2] spherical .

(3.24)

The interface areas are time and space centered. Though other centered choices are also

possible, these particular definitions ensure that a constant density ρ remains constant

and unchanged when the fluid is at rest but the grid is rezoned arbitrarily. Depending

on how the LCPFCT boundary condition factors are chosen, a subject considered in both

Sections 5 and 6, the time-variable grid can even move fluid into and out of the system

while the density while a constant density remains constant.

19

4. SPLIT STEP APPLICATION OF MONOTONE FCT ALGORITHMS

Section 3 described the monotone FCT algorithm for integrating a single continuity equa-

tion using LCPFCT. We now extend the approach to solving coupled continuity equations.

Specifically, we want to solve the three conservative continuity equations of gas dynamics

simultaneously,

∂ρ

∂t
= −∇ · ρv, (4.1)

∂ρv

∂t
= −∇ · (ρvv)−∇P (4.2)

and
∂E

∂t
= −∇ · Ev −∇ · (vP) . (4.3)

First, we consider this problem in one spatial dimension using a two stage Runge-Kutta

time integration. Then split step procedures are introduced to combine several one-

dimensional calculations to create a multidimensional monotone calculation. Section 5

expands the discusssion of this section to the practical aspects of using the LCPFCT rou-

tines to carry out the general procedures described here. LCPFCT can be used to solve

systems of continuity equations for many applications but compressible gas dynamics is

the most widespread use and serves as an ideal example to illustrate the various necessary

steps and techniques.

4.1 One-Dimensional Solution of Coupled Continuity Equations

Solving the coupled equations (4.1–4.3) is best done by determining the timestep, then

integrating from the old time to forward a half timestep to to + ∆t
2 , and then integrating

from to to the full timestep to + ∆t. The results of the half-step integration are used to

evaluate time-centered spatial derivatives and fluxes. Assume that the cell-averaged values

of all fluid quantities are known at to. The integration procedure for one timestep is:

1. Integrate the equations for a half timestep to find first-order accurate approximations

to the fluid variables at the middle of the timestep (“time-centered”). This requires

one to:

a. Calculate {voi } and {P oi } using the old values of {ρoi }, {ρoi voi }, and {Eoi } known

at the beginning of the timestep.

b. Convect {ρoi } a half timestep to {ρ
1
2
i }. (Here the superscript 1

2 is used to indicate

a variable at the new half timestep, not the square root).

c. Evaluate −∇P o as the source term for the momentum equation.

20

d. Convect {ρoi voi } to {ρ
1
2
i v

1
2
i } using −∇P o.

e. Evaluate −∇ · (P ovo) as the source term for the energy equation.

f. Convect {Eoi } for a half timstep ∆t
2 to {E

1
2
i } using −∇ · (P ovo).

2. Integrate the equations for a whole timestep to find results which are second-order

accurate in time at the end of the timestep to + ∆t.

a. Calculate {v
1
2
i } and {P

1
2
i } using the half-step values {ρ

1
2
i }, {ρ

1
2
i v

1
2
i }, and {E

1
2
i }.

b. Convect {ρoi } for the full timestep ∆t to {ρ1
i }.

c. Evaluate −∇P 1
2 for the momentum sources.

d. Convect {ρoi voi } to {ρ1
i v

1
i } using −∇P 1

2 .

e. Evaluate −∇ · P 1
2 v

1
2 for the energy sources.

f. Convect {Eoi } to {E1
i } using −∇ · P 1

2 v
1
2 .

3. Repeat these two procedures above to do another timestep from t1 to t2.

This two-step, second-order time integration increases the accuracy of the calculations

significantly.

Often we want to couple Ns chemical species equations to Eqs. (4.1) – (4.3),

∂ns
∂t

= −∇ · nsv , s = 1, ..., Ns (4.4)

where ns(r, t) is the number density of species s and the subscript s is used here to avoid

confusion with i, generally used above as a cell or interface index. In general you do not

have to split the timestep for these variables provided that the half-step velocities are used

in advancing {noi } to {n1
i }. After integrating the fluid variables for the half and whole

timestep, convect these species the full timestep using the centered velocities {v
1
2
i }. If the

half-step values of these variables affect either {v
1
2
i } or {P

1
2
i }, the half-step integration for

the {ni} would also have to be performed.

4.2 Multidimensions through Timestep Splitting

One-dimensional continuity equation solvers such as LCPFCT can be used repetitively

to construct a multidimensional program by timestep splitting in the different coordinate

directions. This approach is straightforward when an orthogonal grid can be constructed

with physical boundaries along segments of grid lines. Various geometries, such as (x−y),

(r−z), or in general orthogonal coordinates (η−ξ), can be integrated by timestep splitting.

21

The approach can also be extended to three dimensions and to fully general geometries

with the addition of special boundary algorithms taking into account the variation of cell

areas and volumes when a general curved boundary intersects the regular orthogonal grid.

For example, the four equations which describe ideal two-dimensional gas dynamics

in Cartesian (x− y) geometry are:

∂ρ

∂t
= − ∂

∂y
(ρvy)− ∂

∂x
(ρvx)

∂ρvx
∂t

= − ∂

∂y
(ρvxvy)− ∂

∂x
(ρvxvx)− ∂P

∂x

∂ρvy
∂t

= − ∂

∂y
(ρvyvy)− ∂

∂x
(ρvyvx)− ∂P

∂y

∂E

∂t
= − ∂

∂y

[
(E + P)vy

]
− ∂

∂x

[
(E + P)vx

]
.

(4.5)

The pressure and energy are related by

E = ε+
1

2
ρ(v2

x + v2
y) . (4.6)

where ε ≡ P/(γ − 1). The right sides of Eqs. (4.5) are separated into two parts, the y-

direction terms and the x-direction terms. This arrangement in each of the four equations

separates the y-derivatives and the x-derivatives in the divergence and gradient terms into

parts which can be treated sequentially by a general one-dimensional continuity equation

solver.

Each y-direction column in the grid is integrated using the one-dimensional LCPFCT

module to solve the four coupled continuity equations (4.5) from time t to t + ∆t. The

22

y-direction split-step equations to be solved are

∂ρ

∂t
= − ∂

∂y
(ρvy)

∂ρvx
∂t

= − ∂

∂y
(ρvxvy)

∂ρvy
∂t

= − ∂

∂y
(ρvyvy)− ∂P

∂y

∂E

∂t
= − ∂

∂y
(Evy)− ∂

∂y
(Pvy) .

(4.7)

Equations (4.7) are in the form of the general continuity equation (1.1) with α = 1 for

planar geometry. Because the y gradients and fluxes are being treated together, the one-

dimensional integration connects those cells which are influencing each other through the

y-component of convection.

The changes due to the derivatives in the x-direction must now be included. This is

done in a second split step of one-dimensional integrations along each x-column,

∂ρ

∂t
= − ∂

∂x
(ρvx)

∂ρvx
∂t

= − ∂

∂x
(ρvxvx)− ∂P

∂x

∂ρvy
∂t

= − ∂

∂x
(ρvyvx)

∂E

∂t
= − ∂

∂x
(Evx)− ∂

∂x
(Pvx)

(4.8)

where α = 1 in Eq. (1.1) for planar geometry. The x and y integrations are alternated,

each pair of sequential integrations constituting a full convection timestep. Thus a single

optimized algorithm for a reasonably general continuity equation can be used to build up

multidimensional fluid dynamics models. Analogous equations for axisymmetric geometry

have been written out in Oran and Boris (1987).

To use this split-step approach, the timestep must be small enough that the distinct

components of the fluxes do not change the cell-averaged values appreciably during the

23

timestep. This approach is second-order accurate as long as the timestep is small and

changed slowly enough, but there is still a bias built in depending on which direction,

x or y, is integrated first. To remove this bias, the results from two calculations for

each timestep can be averaged, an expensive but effective solution. Alternately a fully

multidimensional FCT algorithm can be used such as developed by Zalesak (1979, 1981)

or DeVore (1989,1991) with some corresponding extra cost and complication. Generally

this sequencing bias is quite small and is usually ignored.

24

5. HOW TO USE LCPFCT

The set of Fortran subroutines that make up the LCPFCT library is listed in Appendix A.

This library contains a main subroutine, called LCPFCT, and several auxiliary subroutines.

This structure serves both efficiency and flexibility: minimizing the need to repeat common

calculations and providing flexibility in defining various geometries, source terms, and

boundary conditions. Thus, for example, a single velocity profile may be used to convect

a number of different continuity equations representing different chemical species, fluid

phases, or ionization states. All velocity-dependent coefficients that are common to the

FCT algorithms for these several equations during a particular timestep and integration

direction are computed once by subroutine VELOCITY and placed in a common block for

use by the repeated calls to LCPFCT which will integrate each of the equations separately.

An entire calculation, therefore, requires a sequence of calls 1) to define the geometry by

specifying a suitable computational grid, 2) to calculate a number of velocity-dependent

factors, 3) to establish the boundary condition coefficients for the next continuity equation

to be integrated, 4) to calculate the source terms in Eqs. (4.1–4.3), and 5) to advance

the fluid variables one continuity equation at a time.

5.1 LCPFCT Variables in Common

Information is passed between the user’s program and the LCPFCT library generally

through the arguments to the subroutine calls. Information is passed between the various

subroutines of the LCPFCT library both through the subroutine arguments and through

named common blocks. The user is asked to control and store the information pertaining

specifically to his problem and the particular continuity equations being solved while the

LCPFCT library controls all data that might be reused or that is particular to the FCT

algorithms being used to integrate and manage the grid and the equations.

Each of the subroutines in the library performs a different, well-defined task. The

main subroutine LCPFCT convects the variables, and it must be called for each variable

integrated at each timestep or partial timestep. Subroutine MAKEGRID calculates the

geometric coefficients and must be called any time the grid cell interfaces are changed. The

subroutine VELOCITY updates the velocity-dependent coefficients and must be called

each time the convective velocity or the grid is changed. Subroutine SOURCES is called

separately each time a new source term for a continuity equation needs to be evaluated.

Thus none, one, or several different source terms may be added together and passed to the

continuity equation solver. LCPFCT then resets the source terms to zero at the end of

its execution. Thus source terms, which generally are not reuseable in any case, must be

recomputed for each call to LCPFCT. Table 5.1 below defines the variables in FCT GRID

and their equivalent algorithmic/physical definition is given in Section 3. These library

common blocks generally begin with the prefix FCT .

25

Table 5.1 Variables in LCPFCT Common Blocks

Type Text Symbol Meaning

FCT GRID variables

ROH RA(N+1)∗ ro
i− 1

2

Cell boundary location; start of timestep

RNH RA(N+1) rn
i− 1

2

Cell boundary location; end of timestep

LO RA(N) Λoi Cell volume; start of timestep

LN RA(N) Λni Cell volume; end of timestep

AH RA(N+1) Ai− 1
2

Cell interface area; average over timestep

LH RA(N+1) Λi− 1
2

= 1
2 [Λni + Λni−1]

RLN RA(N) 1/Λni
RLH RA(N+1) 1

2 [1/Λni + 1/Λni−1]

DIFF RA(N+1) Array used for grid differences in MAKEGRID

FCT VELO variables

HADUDTH RA(N+1) 1
2∆tAi− 1

2
∆vi− 1

2
Interface flux coefficient to determine

transported flux

EPSH RA(N+1) ∆vi− 1
2
∆t Ai− 1

2
/Λi− 1

2
Nondimensional interface velocity

NULH RA(N+1) νi− 1
2
Λi− 1

2
Diffusion flux coefficient

MULH RA(N+1) µi− 1
2
Λi− 1

2
Raw antidiffusion flux coefficient

ADUGTH RA(N+1) Ai− 1
2
[rn
i− 1

2

− ro
i− 1

2

] Volume swept out by interface

VDTODR RA(N+1)
∆t∆v

i− 1
2

[rn
i+ 1

2

−rn
i− 3

2

] Nonconservative form of transport coefficient

FCT MISC variables

SOURCE RA(N) { }† Sum of all the source terms

DIFF1 REAL Residual diffusion; value of Si− 1
2

used in

antidiffusion coefficient; default = 1.000

FCT NDEX variables

SCALARS RA(NIND) { }† Additive scalar source terms

INDEX IA(NIND) Scalar list of cells to receive added sources

NIND INTEGER Number of nonzero scalars in the indexed list

26

Table 5.1 Variables in LCPFCT Common Blocks (Cont.)

Type Text Symbol Meaning

FCT SCRH variables

LNRHOT RA(N)∗ Λni ρ̄i and Λni ρ
n
i Transported/diffused mass elements

LORHOT RA(N) Λoi ρ
∗
i and Λoi ρ

T
i Transported mass elements

FSGN RA(N+1) Si− 1
2

Sign of grid differences of ρ̄i

FABS RA(N+1) |fad
i− 1

2

| Absolute value of raw antidiffusive flux

FLXH RA(N+1) multiple uses Used for convective and diffusive fluxes

TERP RA(N+1) Si− 1
2
Λni (ρ̄i+1 − ρ̄i) Antidiffusive flux limit from right

TERM RA(N+1) Si− 3
2
Λni−1(ρ̄i−1 − ρ̄i−2) Antidiffusive flux limit from left

RHOT RA(N) ρTi Transported, sources added and

compressed density

RHOTD RA(N) ρ̃i Transported diffused, sources added and

compressed density

SCRH RA(N) multiple uses Source term scratch space

SCR1 RA(N) multiple uses Source term scratch space

∗ RA(N) stands for Real Array of length N.
∗∗ IA(N) stands for Integer Array of length N.
† Source terms defined in Eq. (3.10)

As will be seen in the appendices, all of the one-dimensional LCPFCT arrays meant to span

the maximum size of the physical grid are dimensioned NPT (number of points) and this is

set to 202 everywhere by a parameter statement. When a bigger problem is attempted, for

example a 250× 150 grid in two dimensions, this size should be increased. By convention

we leave two more points than the maximum line through the system although one extra

should be enough.

The LCPFCT library is structured so that information that needs to be passed from

the user’s control program to LCPFCT is done through arguments in various subroutine

calls. The user generally does not need to access the internal variables stored in the

named common blocks. There are exceptions to this, however, when a more advanced

user may want to and can access these internal variables. For example, the common block

FCT GRID stores and transmits information about the grid locations, grid motion, cell

volumes and cell interface areas. One can include FCT GRID in a user-supplied subroutine

where the volumes and areas of the cells are computed for a nonstandard user-specified grid

27

geometry. Another example could involve user modification of the antidiffusion coefficients

(Fortran variable MULH) in FCT VELO to steepen known fluid interfaces or contact

surfaces.

FCT VELO contains velocity-dependent information about diffusion and antidiffusion

coefficients and fluxes through the cell interfaces. FCT MISC includess the array contain-

ing the accumulated source terms and the residual diffusion coefficient, DIFF1 (defaulted

to 0.999). DIFF1 may be reset by a call to subroutine RESIDIFF to unity for minimal

residual diffusion or to slightly smaller values than 0.999. FCT SCRH contains a number

of internal scratch vectors used by the LCPFCT subroutine and other subroutines of the

libary. They are in common to allow reuse of the space but no information, by convention,

is ever passed between subroutines using this common block. Equivalencing the variables

in FCT SCRH with scratch storage in the user’s program provides a way to save space

but the capacity of modern computers generally makes this a needless economy. There is

also a common block FCT NDEX which appears only in SOURCES, ZERODIFF, AND

ZEROFLUX. FCT NDEX is intended to convey scalar indexed source terms directly from

a user program to SOURCES, or indexed lists of cells to ZERODIFF or ZEROFLUX,

without need for a more complex calling sequence. These and other miscellaneous uses of

the LCPFCT library including a few special auxiliary routines are discussed in Section 7.

The LCPFCT subroutines, their arguments, and their calling sequences are decribed

in detail in the subsections below, both in tabular form and in explanatory text. The

Fortran subroutines themselves are reproduced in Appendix A. There are, in addition

several other library subroutines in Appendix A whose use is often not necessary or which

are needed only for some simple auxiliary tasks (ZERODIFF, ZEROFLUX, CONSERVE)

or for special types of applications (COPYGRID, NEW GRID, SET GRID). These are

discussed only briefly here and in Section 7 on “Esoterica” but they also appear in Appendix

A. By reading through the LCPFCT subroutine programs in Appendix A, the reader can

determine the function of each routine exactly by looking at the quantities which each

uses, computes, and leaves in the named common blocks.

5.2 Subroutines in LCPFCT

Subroutine MAKEGRID: –

Subroutine MAKEGRID sets up the grid parameters and computes cell volumes and inter-

face areas for the entire LCPFCT library. The information computed by MAKEGRID is

passed through common block FCT GRID to subroutines VELOCITY, SOURCES, CON-

SERVE, CNVFCT, and LCPFCT. Table 5.2 shows the calling sequence and defines the

arguments for MAKEGRID. The single subroutine MAKEGRID subsumes the functions

played by the three subroutines IGRIDD, NGRIDD, and OGRIDD in the previously pub-

28

Table 5.2 Arguments in Subroutine MAKEGRID

CALL MAKEGRID (RADHO, RADHN, I1, INP, ALPHA)

Variable Name Type Text symbol Meaning

RADHO RA(INP)∗ ro
i− 1

2

Cell interfaces at start of timestep

RADHN RA(INP)∗ rn
i− 1

2

Cell interfaces at end of timestep

I1 Integer I1− 1
2 Index of first active cell interface

INP Integer IN + 1
2 Index of last active cell interface

ALPHA Integer α = 1 for planar (Cartesian) geometry

= 2 for cylinderical geometry

= 3 for spherical geometry

= 4 user-supplied geometry

∗ RA(N) stands for Real Array of length N .

lished version of the FCT library. This is the single greatest change from a user’s per-

spective in the current version and was made to simplify control of the grid at the cost of

a few arithmetic operations which strictly speaking can be avoided in some applications.

MAKEGRID is used to generate the geometry-dependent coefficients for a particular line

of integration in a particular direction. If the grid is fixed and only one direction of inte-

gration is active, one call to MAKEGRID is the only geometric call needed. If all rows of

a two-dimensional calculation have the same grid, MAKEGRID only need be called once

before the first row integration of a timestep. Then it must be called again before be-

ginning column integrations to complete the split multidimensional timestep. The calling

sequence to subroutine MAKEGRID has five arguments:

1. RADHO – A real array containing the location of the “old” interfaces of the grid

cells, which is referred to in Section 3 as ro
i+ 1

2

.

2. RADHN – A real array containing the location of the “new” interfaces of the grid

cells, which is referred to in Section 3 as rni+1
2

.

3. I1 – The first index of the old and new cell interfaces supplied in RADHO and

RADHN . Typically the grid is set up from cell and interface I1 across the entire

system to cell IN and interface IN + 1 even though any specific integration may use

only a portion of the grid. Care should be exercised if I1 does not equal 1.

4. INP – The last index of the old and new active cell interfaces supplied in RADHO

29

and RADHN .

5. ALPHA – The grid geometry indicator. α = 1 for cartesian geometry, α = 2 for

cylinderical geometry, and α = 3 for spherical geometry. The fourth option, α =

4, requires the user to write a subroutine called before the call MAKEGRID. This

subroutine must compute the timestep centered interface areas, {AH i−1
2
}, and the

old and new cell volumes {LOi} and {LNi}, placing the results in common block

FCT GRID. Even for the case of the user supplied geometry, the old and new interface

locations are passed to MAKEGRID through the arguments RADHO and RADHN.

Subroutine VELOCITY: –

Table 5.3 Arguments in Subroutine VELOCITY

CALL VELOCITY (UH, I1, INP, DT)

Variable name Type Text symbol Meaning

UH RA(INP)∗ vi− 1
2

Cell interface velocities

I1 Integer I1− 1
2 index of the first interface integrated

INP Integer IN + 1
2 index of the last interface integrated

DT Real ∆t time step

∗ RA(N) stands for Real Array of length N .

After the grid geometric factors are computed, subroutine VELOCITY is used to compute

the velocity-dependent coefficients for the convective transport, diffusion, and antidiffusion.

This call must be made each time the convective transport velocity is changed. VELOCITY

need be called only once if, for example, the velocity is constant in time. However, for

a typical fluid problem with a second-order time integration, VELOCITY must be called

twice for each row and column of the grid: once with the velocities at the start of the

timestep and again after the half step using the velocities computed from the half step.

VELOCITY must also be called each time there is a change in the grid locations even if

the velocity field itself has not changed. The calling sequence to subroutine VELOCITY

has four arguments:

1. UH – The fluid velocities, {v0, 12
i− 1

2

}, on the cell interfaces, {ri− 1
2
}. These must be

computed as some average of the cell centered velocities {v0, 12
i },

30

2. I1 – The interface index of the first cell, at rn
I1− 1

2

, in the domain to be integrated. This

is the location where boundary conditions at one side of the domain of integration are

specified.

3. INP – The interface index of the last cell, at rn
IN+ 1

2

, in the domain to be integrated.

This is the location where boundary conditions at the other side of the domain of

integration are specified.

4. DT – the timestep.

The velocities v
0, 12
I1− 1

2

and v
0, 12
IN+ 1

2

are also the boundary conditions on the velocity and

determine the flux of the conserved quantity through the boundary. If the velocity of the

grid at the boundary is equal to UH there, the convection flux of the conserved quantity

through the boundary should be identically zero.

The LCPFCT routines also allow the user to integrate variables in a selected part

of the grid. For example, one can eliminate a corner of a two-dimensional grid from

the integration or allow this corner to be integrated seperately. Similarly the user can

implement special boundary conditions in the interior of the grid. This is done by using

the parameter I1 (different from 1) to define the first cell to be integrated or reducing

INP = IN + 1, the last cell interface. It is important to remember that the grids and

fluxes are defined on the boundaries of cells and that INP should be the value of the last

cell to be integrated plus one. There should always be IN + 1 interfaces when IN cells

are integrated.

Subroutine SOURCES: –

Once the call to VELOCITY has been made, these velocity-dependent coefficients can be

used to convect several different conserved quantities by corresponding separate calls to the

main subroutine LCPFCT. For the solution of the coupled fluid dynamics equations, this

involves a call to LCPFCT for the mass density, each momentum density, and the energy

density. For each of these equations, source terms are added by a call to the subroutine

SOURCES immediately prior to the corresponding call to LCPFCT. The sum of several

different sources can be accumulated by a sequence of calls to SOURCES, which keeps

the running sum from all SOURCES calls since the last call to LCPFCT in the real array

SOURCE in FCT MISC. Once LCPFCT uses SOURCE, it is reset to zero so new sources

can be added or it can be left at zero until it is needed again. The calling sequence of

subroutine SOURCES has eight arguments:

1–2. I1 and IN are the first and last cells integrated using the velocities set up by the last

call to VELOCITY.

31

Table 5.4 Arguments in Subroutine SOURCES

Call SOURCES (I1, IN, DT, MODE, C, D, D1, DN)

Variable Name Type Text symbol Meaning

I1 Integer 1 Location of first cell of integration

IN Integer N Location of last cell of integration

DT REAL ∆t Timestep

MODE Integer = 1 computes ∇ ·D1 conservatively

= 2 computes C2∇D2

= 3 adds D3 to the sources

= 4 ∇ ·D1 from interface data D

= 5 C2∇D2 from interface data D

= 6 adds +C for selected indexed cells

C RA(N)∗ Ck,i Array of source variables

D RA(N) Dk,(i,i− 1
2) Array of source variables

D1 Real DI1 First interface value of D (if needed)

DN Real DINP Last interface value of D (if needed)

∗ RA(N) stands for Real Array of length N .

3. DT is the current timestep used to advance the convected quatities. The value of DT

passed to sources should be equal to one half the whole-timestep value for the half

timestep integration in a fluid dynamics calculation.

4. MODE, an integer, determines the types of source terms included. SOURCES com-

putes divergence, gradient, and additive source terms according to Eq. (3.10). When

MODE = 1, the source term (∇·D) in Eq. (3.10) is computed using the cell-centered

array D. When MODE = 2, the source term (C∇D) in Eq. (3.10) is computed from

cell-centered arrays C and D. MODE = 3 adds an externally computed source term

D3 as in Eq. (3.10). MODE = 4 and MODE = 5 are used to compute the same

sources as MODE = 1 and MODE = 2, except that arrays C and D are provided

as cell-interface data by the user. MODE = 6 is used like MODE = 3 with nonzero

sources appearing only at the NIND cells indicated in the first NIND locations of

the integer array INDEX. When MODE = 1, 3, 4, or 6, the array C is not used at

all.

5-6. C and D are arrays of source datahaving different uses as described in item 4 above.

The values of the source terms computed by SOURCES are passed to the subroutine

32

LCPFCT through the common block FCT MISC in the real array SOURCE.

7-8. D1 and DN are source data at the boundaries of the integration region.

Subroutine LCPFCT: –

The main subroutine LCPFCT integrates and updates the variables. It must be called for

each of the conserved quantities to be integrated. Subroutine CNVFCT is treated exactly

the same as LCPFCT with the one difference that the compression term in the continuity

equation is left out. Thus CNVFCT really solves the ‘advection’ equation rather than the

full continuity equation. The calling sequence for subroutine LCPFCT (CNVFCT) has

nine arguments:

1. RHOO – A real array that stores the values of one of the conserved quantities ρoi
at the beginning of the timestep. The symbol ρ is used here to represent the mass

density, momentum density, energy density, species density, or any other conserved

quantity for which the fluid velocity v used in the previous call to VELOCITY is the

appropriate convective velocity.

2. RHON – A real array that stores the values of ρni at the end of the timestep. RHOO

and RHON may be the same array provided the values of RHOO do not need to be

saved. (These arrays should be different if a two-step algorithm is being used.)

3–4. I1 and IN are the first and last grid points integrated in the domain from cell I1 to

IN .

The next four arguments, SRHO1, V RHO1, SRHON , V RHON , are real numbers used

to define a general set of boundary conditions. LCPFCT uses guard cells on either end

of the integrated domain to define boundary conditions. These guard cells are used to

continue the calculation from the interior of the grid to the exterior of the grid and provide

the missing data for the calculation on either end of the integrated domain. The guard-cell

values are a linear combination of the value just inside the boundary and an externally

imposed value.

5. SRHO1 – The slope boundary condition factor for the guard-cell values adjacent to

cell I1. Using SRHO1, the derivative of the solution can be specified on the first

interface.

6. VRHO1 – A constant to be added to the first guard cell values. The equation for

the density value at guard cell I1− 1 is ρg = S1 × ρI1 + V1.

7. SRHON – The slope boundary condition factor for the guard-cell values adjacent to

cell IN . Using SRHON , the derivative of the solution can be specified on the last

33

Table 5.5 Arguments in Subroutines LCPFCT and CNVFCT

Call LCPFCT (RHOO, RHON, I1, IN, SRHO1, VRHO1, SRHON, VRHON, PBC)

Call CNVFCT (RHOO, RHON, I1, IN, SRHO1, VRHO1, SRHON, VRHON, PBC)

Variable Name Type Text Symbol Meaning

RHOO RA(N)∗ ρoi Grid point densities at start

RHON RA(N) ρni Grid point densities at end

I1 Integer I1or1 Index of first cell of integration

IN Integer INorN Index of last cell of integration

SRHO1 Real S1 First derivative boundary condition

VRHO1 Real V1 First constant boundary condition

SRHON Real SN Last derivative boundary condition

VRHON Real VN Last constant boundary condition

PBC Logical .true. = Periodic boundary conditions

∗ RA(N) stands for Real ARRAY of length N .

interface.

8. VRHON – A constant to be added to the last guard cell values. The equation for

the density value at guard cell IN + 1 is ρg = SN × ρIN + VN .

9. PBC – Declared a ‘logical’ variable with the value .true. for periodic boundary

conditions and .false. otherwise. When periodic boundary conditions are used, the

other four boundary condition variables (5–8 above) are ignored.

A more complete description of how to specify and use these variables along with

examples of how to set up a variety of boundary conditions for gas dynamic problems is

the subject of Section 6. Actual programs using some of these examples are given in the

appendices.

The Do loops in LCPFCT can be identified with the corresponding equations in

Section 3. Eq. (3.6) is combined with part of Eq. (3.9) in Do 1. Do 2 combines the rest

of Eq. (3.9) with eq. (3.10), the precomputed source terms, and with Eq. (3.11). Do 3

corresponds to Eq. (3.14) and also computes the differences of the transported, diffused

density later used in Do 5, the flux-correction formula Eq. (3.21). Do 4 computes a

number of the FCT terms also appearing in Eq. (3.21). Do 5 calculates the new density

profile {ρni } of Eq. (3.22), returned as the output of LCPFCT.

34

In addition to the main sequence of subroutines, there are additional subroutines

which give the LCPFCT library considerable added flexibility. These are: CNVFCT, a

nonconservative form of FCT; ZEROFLUX and ZERODIFF, which turn off the advection

and/or diffusion fluxes at specified interfaces; RESIDIFF, discussed above, to change the

residual diffusion coefficient; and CONSERVE, which monitors the conservation of user-

specified variables.

CNVFCT (RHOO, RHON, I1, IN, SRHO1, VRHO1, SRHON, VRHON, PBC) is a non-

conservative convective form of the FCT solver which solves the advective equation

∂ρ

∂t
+ v∇ρ = Sources , (5.1)

rather than the conservative form

∂ρ

∂t
+∇ρv = Sources . (5.2)

CNVFCT serves roughly the same purpose as the LCPFCT subroutine and the argu-

ment list is identical to that of LCPFCT. CNVFCT finds its main usage when a mass

fraction for a conserved density must be transported. Thus, if f ≡ ρa/ρtotal is the

ratio of a species density to the total density, f satisfies Eq. (5.1) rather than (5.2).

Source terms are treated in the same way in both LCPFCT and CNVFCT and the

sequence of auxiliary subroutine calls is also identical.

ZERODIFF (IND) is a specialized subroutine that allows the user to set to zero all

diffusive and antidiffusive fluxes calculated in LCPFCT through an arbitrary number

of specific cell interfaces. ZERODIFF does not alter the convective fluxes through the

selected interfaces and is therefore useful in one-dimensional codes where the interfaces

of a number of different materials are being tracked in a Lagrangian manner. ZERO-

DIFF guarantees that there is no diffusion of the materials across the chosen interfaces.

In multidimensional models, ZERODIFF may be used to ensure that nothing diffuses

onto or off of the grid at a boundary where the incoming flux is known. Examples of

the use of ZERODIFF are included in the test programs reprinted in the appendices.

The call to ZERODIFF should be made just after the call to VELOCITY. A call

to VELOCITY erases the effect of a call to ZERODIFF. The calling sequence for

subroutine ZERODIFF has one argument:

1. IND – If positive, an integer index to the cell interface where the diffusive fluxes are

to be set identically equal to zero. If negative, the user must set NIND in common

block FCT NDEX to the number of interfaces to be zeroed and fill the first NIND

locations of the integer array INDEX (also in FCT NDEX) with the corresponding

interface indices.

35

ZEROFLUX (IND) is similar to ZERODIFF, except that it sets to zero the convective

fluxes as well as the diffusive and antidiffusive fluxes. The calling sequence is identical

to that for ZERODIFF. ZEROFLUX is useful at solid walls. Examples of the use of

ZEROFLUX are included in the test programs reprinted in the appendices. The call

to ZEROFLUX should be made just after the call to VELOCITY. A call to VELOC-

ITY erases the effect of a call to ZEROFLUX. The calling sequence for subroutine

ZEROFLUX has one argument:

1. IND – If positive, an integer index to the cell interface where the diffusive fluxes are

to be set identically equal to zero. If negative, the user must set NIND in common

block FCT NDEX to the number of interfaces to be zeroed and fill the first NIND

locations of the integer array INDEX (also in FCT NDEX) with the corresponding

interface indices.

CONSERVE (RHO, I1, IN, CSUM) is a useful utility subroutine that allows the user

to monitor the conservation of variables. It calculates the conservation integral as a

summation,

CSUM =

IN∑
i=I1

Λni ρi, (5.3)

where the quantity summed can be any of the grid quantities {ρi}. CONSERVE com-

putes the conservation integral using cell volumes from the last call to MAKEGRID.

The calling sequence for subroutine CONSERVE has four arguments:

1. RHO – An array of real values of some grid quantity ρoi for which the conservation

integral is to be calculated.

2–3 I1 and IN – The first and last cells to be included in the conservaton integral.

4. CSUM – A real variable where the summed quantity is to be stored.

LCPFCT is an exactly conservative algoritm in the sense that any physically conserved

quantity summed over a fixed interval remains constant to within computer roundoff error.

However, the user must beware of boundary conditions. Grid motion or fluxes out of the

boundary result in a variable value of the conserved quantity determined by the flux

through the two end boundary interfaces.

There are also three rather special purpose gridding routines: COPYGRID, which sets

aside a copy of all the grid variables for later reuse without recomputation; SETGRID,

which is used for polar coordinates; and NEWGRID, which reduces the number of geo-

metrical calculations when the new grid interface locations change but the old ones remain

the same. These subroutines are also reproduced on Appendix A and discussed briefly in

Section 7 entitled “Additional Information”.

36

5.3 Typical Calling Sequences

We now show how the various LCPFCT subroutines are interlinked to provide a com-

plete calculation. Examples through simple Fortran test programs are also given in the

appendices and summarized in the following tables. A typical sequence of calls for a

one-dimensional gas dynamics problem on a fixed Eulerian grid is given in Table 5.6.

Table 5.6 Calls for One-Dimensional Eulerian Gas Dynamics Problems

† Calculate grid locations RADHN (rn
i− 1

2

for i = 1, ..., N + 1); initialize variables

Call MAKEGRID (RADHN, RADHN, 1, N+1, 1)

† Begin timestep loop

† Compute half step interface velocity UH (vo
i− 1

2

), cell PRES (P oi), and cell PV (P oi v
o
i)

Call VELOCITY (UH, 1, N+1, 0.5*DT)

Call ZERODIFF (1)

Call ZERODIFF (N+1)

Call LCPFCT (RHOO, RHON, 1, N, 1.0, 0.0, 1.0. 0.0, .false.)

Call SOURCES (1, N, 0.5*DT, 2, ONE, PRES, PRE1, PREN)

Call LCPFCT (RVXO, RVXN, 1, N, 1.0, 0.0, 1.0, 0.0, .false.)

Call SOURCES (1, N, 0.5*DT, 1, ZERO, PV, PV1, PVN)

Call LCPFCT (ERGO, ERGN, 1, N, 1.0, 0.0, 1.0, 0.0, .false.)

† Compute cell velocities, source terms, for the full step based on the half-step results

(see GASDYN example in Appendix C)

Call VELOCITY (UH, 1, N+1, DT)

Call ZERODIFF (1)

Call ZERODIFF (N+1)

Call LCPFCT (RHOO, RHON, 1, N, 1.0, 0.0, 1.0. 0.0, .false)

Call SOURCES (1, N, DT, 2, ONE, PRES, PRE1, PREN)

Call LCPFCT (RVXO, RVXN, 1, N, 1.0, 0.0, 1.0, 0.0, .false)

Call SOURCES (1, N, DT, 1, ZERO, PV, PV1, PVN)

Call LCPFCT (ERGO, ERGN, 1, N, 1.0, 0.0, 1.0, 0.0, .false)

† Update velocities, and timestep and begin next timestep

† Indicates work the user must do.

Table 5.7 shows a sequence of calls appropriate to a Lagrangian fluid dynamics cal-

culation (advancing the cell interface locations as well as ρ, ρU , and E). In these two

37

Table 5.7 Calls for One-Dimensional Lagrangian Gas-Dynamic Problem

† Begin timestep loop

† Calculate grid locations RADHO (r0
i− 1

2

); initialize variables

† Compute new interface locations RADHN (r
1
2

i− 1
2

), interface velocities UH (vo
i− 1

2

), and

cell source terms PRES (P oi), and PV (P oi v
o
i) for the half step:

Call MAKEGRID (RADHO, RADHN, 1, N+1, 1)

Call VELOCITY (UH, 1, N+1, 0.5*DT)

Call ZERODIFF (1)

Call ZERODIFF (N+1)

Call LCPFCT (RHOO, RHON, 1, N, 1.0, 0.0, 1.0. 0.0, .false.)

Call SOURCES (1, N, 0.5*DT, 2, ONE, PRES, PLEFT, PRIGHT)

Call LCPFCT (RVXO, RVXN, 1, N, 1.0, 0.0, 1.0, 0.0, .false.)

Call SOURCES (1, N, 0.5*DT, 1, ZERO, PV, PVLEFT, PVRIGHT)

Call LCPFCT (ERGO, ERGN, 1, N, 1.0, 0.0, 1.0, 0.0, .false.)

† Compute grid, velocities, and source terms for full step based on half-step results

Call MAKEGRID (RADHO, RADHN, 1, N+1, 1)

Call VELOCITY (UH, 1, N+1, DT)

Call ZERODIFF (1)

Call ZERODIFF (N+1)

Call LCPFCT (RHOO, RHON, 1, N, 1.0, 0.0, 1.0. 0.0, .false.)

Call SOURCES (1, N, DT, 2, ONE, PRES, PRE1, PREN)

Call LCPFCT (RVXO, RVXN, 1, N, 1.0, 0.0, 1.0, 0.0, .false.)

Call SOURCES (1, N, DT, 1, ZERO, PV, PV1, PVN)

Call LCPFCT (ERGO, ERGN, 1, N, 1.0, 0.0, 1.0, 0.0, .false.)

† Update new interface locations, velocities, and timestep and begin next timestep

† Indicates work the user must do.

examples cell-center pressure source terms are sent to Subroutine SOURCES for use with

MODE = 1 and MODE = 2. In Subroutine GASDYN (Appendix C), interface pres-

sure source terms are computed by the user, calling for MODE = 3 and MODE = 4

in Subroutine SOURCES. A multidimensional fluid dynamics program can be formed by

time splitting the equations into successive calculations in each direction. The half and

whole steps are performed in successive pairs with appropriate calls to MAKEGRID to

change the grid for the coordinate directions. If the grid moves, MAKEGRID is called

38

Table 5.8 Calls for Two-Dimensional Gas-Dynamic Problem

† Begin new time step with the x coordinate direction integration ...

Call MAKEGRID (XCOORD, XCOORD, 1, NX+1, 1)

† Calculate velocities and source terms for the x-direction half step

Call VELOCITY (VX, 1, NX+1, 0.5*DT)

Call ZEROFLUX (1)

Call ZEROFLUX (NX+1)

Call LCPFCT (RHOO, RHON, 1, NX, 1.0, 0.0, 1.0, 0.0, .false.)

Call SOURCES (1, NX, 0.5*DT, 2, ONE, PRES, PRE1X, PRENX)

Call LCPFCT (RVXO, RVXN, 1, NX, 1.0, 0.0, -1.0, 0.0, .false.)

Call LCPFCT (RVY0, RVYN, 1, NX, 1.0, 0.0, 1.0, 0.0, .false.)

Call SOURCES (1, NX, 0.5*DT, 1, ZERO, PV, PV1X, PVNX)

Call LCPFCT (ERGO, ERGN, 1, NX, 1.0, 0.0, 1.0, 0.0, .false.)

† Calculate velocities and sources for whole step

† Repeat the last nine calls replacing 0.5*DT by DT

† Begin y-direction calculations

Call MAKEGRID (YCOORD, YCOORD, 1, NY+1, 1)

† Calculate y-direction velocities and sources for half step

Call VELOCITY (VY, 1, NY+1, 0.5*DT)

Call ZEROFLUX (1)

Call ZEROFLUX (NY+1)

Call LCPFCT (RHOO, RHON, 1, NY, 1.0, 0.0, 1.0, 0.0, .false.)

Call LCPFCT (RVXO, RVXN, 1, NY, 1.0, 0.0, 1.0, 0.0, .false.)

Call SOURCES (1, NY, 0.5*DT, 2, ONE, PRES, PRE1Y, PRENY)

Call LCPFCT (RVY0, RVYN, 1, NY, 1.0, 0.0, -1.0, 0.0, .false.)

Call SOURCES (1, NY, 0.5*DT, 1, ZERO, PV, PV1Y, PVNY)

Call LCPFCT (ERGO, ERGN, 1, NY, 1.0, 0.0, 1.0, 0.0, .false.)

† Repeat the above nine statements for the full timestep

† Indicates work the user must do.

with both the old and the new grid locations. A typical x – y cartesian geometry model

with hard wall boundaries is given schematically in Table 5.8. The daggers in the table

indicate material the user must supply.

39

5.4 Summary of the Major LCPFCT Library Routines

LCPFCT has several subroutines that perform the four distinct tasks required to advance

one or more general continuity equations a single timestep. Here we summarize these four

subroutines and their associated arguments and calling sequences.

1. MAKEGRID (RADHO, RADHN, I1, INP, ALPHA) – sets up the finite volume

computational grid at the start of the run or when changing cell definitions at the

beginning of or during a timestep. Both the grid at the beginnning of the integration

step and at the end of the integration step must be specified.

4. VELOCITY (UH, I1, INP, DT) – calculates all velocity dependent terms, the diffu-

sion, and antidiffusion coefficients δvi+ 1
2
, νi+ 1

2
, µi+ 1

2
.

5. SOURCES (I1, IN, DT, MODE, C, D, D1, DN) – can be called once or repeatedly

to build up composite sources terms of several types.

6. LCPFCT (RHOO, RHON, I1, IN, SRHO1, VRHO1, SRHON, VRHON, PBC) –

takes the old densities RHOO on the old grid and calculates new densities RHON on

the new grid using the flux-corrected transport (FCT) algorithm.

These four tasks described are programmed separately to eliminate unnecessary recal-

culation of quantities which appear in several different continuity equations having the

same flow field (VELOCITY) or which must be calculated only when the grid is changed

(MAKEGRID). The source terms (SOURCES) are treated separately because they are not

used at all in many continuity equations. Source terms should always be computed imme-

diately before they are used in a call to LCPFCT. LCPFCT then resets the source terms

to zero just before returning to the users program each time it is called. For example, if

the source terms for the energy equation are computed before the momentum equation is

advanced, they will be lost after LCPFCT is called to advance the momentum equation.

In addition the momentum equation would then be solved incorrectly because it includes

the energy source terms.

40

6. BOUNDARY CONDITIONS

Boundary conditions, distinct from the LCPFCT solution algorithm, are needed to model

both confined and unconfined computational domains. When the system modeled is ef-

fectively unconfined, an infinite volume must be represented with only a finite number of

degrees of freedom. When the system is confined, the effects of realistic walls and flexible

interfaces with regions of inflow and outflow must be treated. Boundary conditions for com-

putational fluid dynamics have been discussed extensively – see, for example, Grosch and

Orszag (1977), Turkel (1980), and Kutler (1982). Oran and Boris (1987) discuss some of

the general problems of applying boundary conditions to finite-difference and finite-volume

models. Specifying physically accurate outflow conditions for multidimensional regions of

subsonic flow receives the most attention. Recently Thompson (1987,1990), Givoli (1991),

and Poinsot and Lele (1992) have discussed methods for this problem. Grinstein (1993)

has considered these open outflow boundary conditions specifically for the FCT algorithms

used here.

Depending on the physical modes in the system being simulated, accurate treatment of

the boundary conditions will differ greatly. In hyperbolic systems that simulate convection

and acoustic phenomena, waves may travel much faster than the convective flows in which

they propagate. These waves carry information through the medium in all directions

and thus information can enter the computational grid as well as leave it. In parabolic

systems, the information flow through the computational domain is generally one sided so

the solution can be advanced preferentially in one direction. Some supersonic, compressible

flows have all characteristics moving in one direction so that one-sided or direction-biased

equations can be used to find suitable boundary conditions.

There are three distinct ways to implement boundary conditions in numerical models

(Oran and Boris, 1987):

1. Expand the continuum fluid variables in a linear superposition of expansion functions

with the boundary conditions built into each of them, so that any combination auto-

matically satisfies the boundary conditions. Although expansions are used in many

methods, this approach cannot be applied systematically to the FCT algorithms.

2. Develop separate finite-difference formulas for boundary cell values which reflect the for-

mulas used in the interior of the mesh combined with auxiliary relations to determine

the values of the grid variables which would lie outside the computational domain.

These formulas often involve simple analytic formulations for the boundary variables

that use information about the behavior of the system near and at the wall or as it

approaches infinity.

3. Develop extrapolations from the interior to guard or ghost cells outside the computa-

41

tional domain that continue the mesh a distance beyond the domain boundary. These

ghost boundary cells allow cells on the domain boundary to be treated as interior

cells, often with appreciable simplification in the programming.

Of these methods, the third, defining guard-cell values calculated separately, is the easiest

to use and is therefore adopted in LCPFCT. Figure 6.1 shows a two-dimensional uniform

grid whose boundary has been outlined by thicker lines. The grid has Nx cells in the

x-direction, extending from xL to xR, and Ny cells in the y-direction, extending from yB
to yT . Two rows of cells in dashed lines are shown surrounding the computational grid, the

so-called guard cells or ghost cells. Most applications of the LCPFCT subroutines require

the user to provide conditions for one layer of guard cells; any second or third layers

used implicitly in higher differences are calculated inside the LCPFCT routines from the

user-provided formulas.

Using special finite-difference formulas near boundaries is usually equivalent to defin-

ing variable values in guard cells. In LCPFCT, the user provides the coefficients of formulas

that define the guard cell values from the current boundary cell quantities. Rather than

specifying fixed values at the beginning of the timestep, this approach allows the guard

cell values to be updated repeatedly as the fluid quantities in the boundary cell change

during the timestep.

By assigning appropriate values to the guard cells, the fluid elements in the domain

interior can be made to feel appropriate idealized external or reflecting wall conditions as

if there were no boundary at all. When the values of variables assigned to guard cells are

stored in the same arrays as the interior variables, the calculation can be advanced on the

entire grid using a single set of vectorizable finite-difference equations.

To reduce the amount of extra memory required in multidimensional simulations,

guard cells are defined by LCPFCT for only one row at a time. For example, a 20×20×20

grid uses 8000 memory locations per variable. If this grid is extended two guard cells in all

directions, the resulting 24× 24× 24 grid has 13,824 cells, almost a factor of two increase

with no corresponding improvement in resolution! Because LCPFCT redefines the guard-

cell values for each row being integrated, maximum use of the available computer memory

can be made for spatial resolution.

6.1 Representation of Boundary Conditions in LCPFCT

The specific formulation of the boundary conditions used in LCPFCT includes symmetry,

antisymmetry, periodicity, and inflow-outflow and is given by

ρnG = SEBC ρ
n
IE + VEBC , (6.1a)

42

cell 1, 1

cell 1, N cell N , N

cell N , 1

xy

x

y

Figure 6.1 A two-dimensional computational domain with one row of (shaded) guard cells.
Values of variables must be specifed in these cells to model various boundary conditions
on the physical system in order that the variable values can be updated on the interior
cells.

or, for periodic boundary conditions,

ρnG = ρnNO , (6.1b)

where ρn indicates the value of one of the conserved densities ρ(x) at timestep n. Thus

the variable ρ stands for mass density, momentum density, energy density or a chemical

species density. The subscript IE stands for either I1 or IN depending on which End of

the system is being described, i.e., the boundary at the 1st or the Nth cell. The subscript

G indicates the guard cell for the computational domain, either I1−1 when IE is replaced

by I1, or IN + 1 when IE is replaced by IN .

The quantity SEBC is the Slope boundary condition factor for Either Boundary

Condition, the first cell boundary condition (when EBC is replaced by BC1), or the

last cell boundary condition (when EBC is replaced by BCN). This factor multiplies

the current value just inside the boundary of the computational domain, ρIE , to get the

linearly varying component of the corresponding guard cell value. The quantity VEBC is

specified by the user external to the LCPFCT subroutine as a Value added to the guard-

cell value. In a physical situation where the guard cell value does not change regardless of

43

the adjacent value ρIE , the slope factor SEBC would be set to zero and VEBC in Eq. (6.1)

is given the correct value. VEBC might be the fixed temperature of a hot wall, for exam-

ple, or the value of the mass density flowing into the computational domain at supersonic

speed.

Each of the ideal confined and symmetry boundary conditions treated below and de-

scribed in Table 6.1 and Table 6.2 can be obtained by choosing appropriate values of +1

or −1 for SEBC and setting the added constant VEBC to zero. All of the continuitive

inflow-outflow boundary condition cases treated in Section 6.3 in conjunction with Ta-

ble 6.3, Table 6.4, and Table 6.5 can also be obtained by manipulating the values of SEBC
and VEBC sent to the LCPFCT program. Equation (6.1) also allows periodic boundary

conditions to be implemented by choosing PBC = .true. rather than .false. and by setting

both SEBC and VEBC to zero. In this case, ρnNO is the value of the convected conserved

variable at the Other boundary. NO = I1 when IE is replaced by IN and NO = IN

when IE is replaced by I1.

6.2 Boundary Conditions for Confined Domains

Ideal Symmetry or Nonboundary Conditions

The easiest way to treat boundary conditions accurately and consistently is to eliminate

them. This can be done in regions where a symmetry condition exists. The guard-cell

values are predicted exactly from values at corresponding (symmetric) interior locations.

Symmetry conditions can often be applied in the interior of a system as well as at a

boundary. A system may have a natural symmetry plane or line, such as the axis of

an axisymmetric flow. Often a symmetry line is a good approximation to the three-

dimensional system, as in the case of two equal and opposite impinging jets.

Figure 6.2 shows the right boundary and the last few cells of a one-dimensional grid

terminating at a cell interface, as adopted in LCPFCT. This is called a cell-interface

boundary. The edge of the grid in the figure is shaded to indicate a wall and a mirror

(image) system is shown in the several guard cells beyond the boundary. Similar figures

could also be drawn for the left boundary and the first few cells of the grid.

When the given grid locations specify the cell interfaces, the piecewise constant in-

terpretation of the physical variable throughout the domain is natural even though there

are apparent discontinuities at the cell interfaces. In this representation, cells adjacent to

the boundary are complete. The boundary fluxes enter and exit the system at interfaces

where the geometric areas as well as the variable values must be known. Conservation is

ensured by controlling the fluxes at these cell interfaces.

In a piecewise linear representation, the cell-interface locations are generally interpo-

lated from the cell-center locations. The piecewise linear format looks smoother, a major

44

X

S(x)

(a) Boundary at Interface

cell N-2 N-1 N N+1 N+2 N+3

g gg ggg

A(x)

X

S(x)

(b) Boundary at Cell Center

cell N-2 N-1 N N+1 N+2

g gg

A(x)

Figure 6.2 Different applications of symmetry boundary conditions with guard cells. The
interior of the computational domain is on the left of the shaded band, and the guard cells
are on the right. S(x) is a symmetric function and A(x) is an antisymmetric function. (a)
Piecewise constant representation with a cell interface boundary (used by LCPFCT). (b)
Piecewise linear representation with a cell-centered boundary (not used by LCPFCT).

advantage when the time comes to show results. Most contour-plotting routines interpret

the function values as specified at the grid of points with a linear approximation implied

in the cells between. The resulting contours are visually quite smooth, showing disconti-

nuities in direction but not in value at multidimensional cell interfaces. In fact, piecewise

constant representations are often presented graphically as if they were piecewise linear.

45

Table 6.1. Guard-Cell Formulas: Symmetric (S), Antisymmetric (A), Periodic (P)

Boundary at Interface I1∗ Boundary at Interface IN+1∗

SI1−1 = SI1 SIN+1 = SIN
SI1−2 = SI1+1 SIN+2 = SIN−1

AI1−1 = −AI1 AIN+1 = −AIN
AI1−2 = −AI1+1 AIN+2 = −AIN−1

PI1−1 = PIN PIN+1 = PI1
PI1−2 = PIN−1 PIN+2 = PI1+1

∗ Throughout LCPFCT boundaries are defined at cell interfaces.

The piecewise constant format is ideally suited for presentation as pixel plots where a

rectangle of color is filled in for each cell of a variable.

In LCPFCT, the position of the cell interfaces are specified rather than cell-centers.

This change from the previous version, ETBFCT, allows us to capture the added simplic-

ity and flexibility of controlling the boundary fluxes exactly. Figure 6.2 shows two fluid

variables, S(x) and A(x). S(x) is symmetric and A(x) is antisymmetric with respect to the

bounding cell interface. In addition to A(x) and S(x), we also consider a periodic function

P (x). Periodic boundary conditions are relatively easy to treat numerically as they are

simple variants of the symmetry conditions in which interior values somewhere are used

to set guard-cell values elsewhere. The values of the variables at cell N + 1 are equal to

those at cell 1 in a periodic system. Periodic boundary conditions arise in circular systems,

such as stacks of turbine blades, cylindrical systems, spherical systems, or in idealized ap-

proximations to small segments of large Cartesian systems. We generally assume that the

guard cells are the same size as the corresponding cells just inside the boundary. Table 6.1

lists simple guard-cell formulas for symmetric, antisymmetric, and periodic variables for

the interface-centered boundaries used in the LCPFCT modules. The formulas include a

second layer of guard cells for completeness though LCPFCT uses only the first row as

shown in Figure 6.1.

When flow with both normal and tangential components is directed against an ideal

wall, the physical conditions in the guard cells can be found from the values in the nearby

interior cells. This is important for bounded Euler flows and for high Reynolds-number

viscous flows, in which the boundary layers are approximated by additional phenomenolo-

gies. Both symmetry and antisymmetry conditions must be applied at such a wall. The

46

lowest-order condition is symmetric, as the density, temperature, and pressure have zero

slope at the wall. The tangential velocity for free slip conditions is symmetric but the

normal velocity is antisymmetric. The guard-cell values of variables for flow against a wall

are given in Table 6.2.

Table 6.2. Free-Slip Flow Confined by an Insulating Hard Wall

Free Slip Hard Wall∗ Slope SEBC Value VEBC

Density, Temperature, and Pressure:

ρG = ρIE Sρ = 1 Vρ = 0

TG = TIE
PG = PIE

Momentum Parallel to Integration Direction (Perpendicular to Wall):

ρGv‖G = −ρIEv‖IE S‖ = −1 V‖ = 0

Momentum Transverse to Integration Direction (Along Wall):

ρGv⊥G = ρIEv⊥IE S⊥ = 1 V⊥ = 0

Total Fluid Energy Density:

EG = EIE SE = 1 VE = 0

Species Number Densities:

ni,G = ni,IE Si = 1 Vi = 0

∗ Subscript G refers to the guard cell, either cell I1 − 1 or cell IN + 1. Subscript IE
refers to the boundary or end cell of the computational domain, Either cell I1 or cell
IN , for the particular side of the grid being considered.

Sometimes values of the physical variables on the boundary cannot be determined

directly by applying finite-difference equations with symmetry conditions. It is often nec-

essary to develop modified boundary formulas that depend on the information from the

interior. This allows representation of more physically complex situations such as vis-

cous and turbulent boundary layers. The extrapolation formulas generally use one-sided

relations where interior simulation data are combined with phenomenological exterior or

boundary layer data.

47

Boundary Layers and Surface Phenomenologies

Boundaries often model interfaces between two different phases or two materials. A solid

container with a gas inside may be chemically inert, thermally insulating, absolutely rigid,

and perfectly smooth. If these approximations are acceptable, simplified symmetry and

guard-cell algorithms can be used, as indicated above. Many phenomena, however, depend

on the nonideal nature of the boundaries.

Analyses of numerical boundary layers and other surface models fill books and include

subgrid phenomenologies for representing other types of physics not generally resolved in

the simulation. For example, catalytic reactions at walls and thermal boundary layers can

be modeled by surface phenomenologies. As another example, when heat transfer to or

from a wall is high enough, condensation, evaporation, or even ablation can occur.

Developing such surface phenomenologies requires satisfying the conservation equa-

tions at and through the boundaries. This means that fluxes of mass, momentum, energy,

and enthalpy, which enter or leave the computational domain through the boundaries,

must exactly equal the fluxes to the exterior world. Causality and the conservation laws

provide constraints in these problems. For example, if a thermal boundary layer forms in

a gas next to a cold metal wall, the thermal energy moving from the last cell into the wall

should not exceed the thermal capacity of that cell. If the temperature scale lengths in

the gas are resolved and can be estimated in the metal wall, simple energy interchange

approximations between the interior cells and the exterior are adequate to define suitable

interface fluxes in the LCPFCT modules.

If catalytic surface reactions are occurring, the corresponding boundary condition

must estimate the amount of the reactant that encounters the boundary and evaluate the

probabilities of each possible reaction pathway. When the grid is finely resolved at the

wall so that molecular diffusion scale lengths can be resolved, treating the wall interaction

is relatively straightforward. When the cells are too large, however, the reacting species

seem to be spread throughout the last two or three cells by LCPFCT even though they

should actually be concentrated near the wall. Thus purely surface effects will appear as

volume averages, leading to spurious numerical rates.

A similar effect arises from viscosity. The usual macroscopic treatment of the Navier-

Stokes equation assumes the zero-slip condition, which means that the tangential velocity

at the wall is zero. On a microscopic scale, molecules rebounding from a rigid wall are

assumed statistically to lose memory of their tangential direction prior to collision with

the wall. Thus they have equal probability of scattering forward or backward relative to

the flow of the fluid far from the wall. A thin laminar boundary layer forms near the wall.

From the macroscopic fluid point of view, this boundary layer develops on a very small

48

Figure 6.3 Schematic of a grid where the physical boundary layer is substantially smaller
than the computational cell adjacent to the wall.

spatial scale which is usually very expensive to resolve. Again, a subgrid phenomenology is

often used to satisfy the physical conditions at this rigid surface. When the computational

cells are large, the tangential fluid momentum deficit due to this boundary layer is small

even in the cells adjacent to the wall. Not much fluid is slowed down. However, some fluid

is moving at almost zero velocity, as shown in Figure 6.3.

The normal component of velocity must vanish at the wall on both the macroscopic and

the microscopic scale, a condition satisfied by an ideal symmetry condition in LCPFCT.

However, in a viscous fluid, the tangential flow at the surface must also be zero. This

additional tangential zero-slip condition is a complicating factor requiring explicit repre-

sentation. It also requires resolution of the viscosity and viscous scales or a good “law of

the wall” phenomenology. The velocity at the wall is rigorously zero, and viscosity diffuses

the momentum deficit from the boundary layer into the free flow further from the wall. To

actually resolve this boundary layer, very small cells are needed normal the wall. These

small cells, in turn, impose a severe timestep restriction unless the equations are integrated

implicitly. In an LCPFCT calculation based on a primitive variable formulation, the drag

at the wall can be modeled by subtracting momentum from the fluid near the boundary,

extracting just the right amount of parallel momentum from the two or three layers of cells

adjacent to the wall every timestep so that the velocity at the wall approaches zero. This

mometum deficit can in turn be obtained from some appropriate boundary layer model.

49

6.3 Continuitive Boundary Conditions for Unconfined Domains

Simulating an unconfined flow requires representing an effectively infinite region as a finite

computational domain. The boundary conditions must transmit information to and from

the entire outside world, properly absorbing any signals coming from the computational

domain. Systems coupled to an exterior domain can be rigorously computed on a bounded

domain only when the variables and coefficients in the problem become constant at infinity.

When these coefficients are not constant, approximations are always needed, and there will

be an inaccuracies having nothing to do with the accuracy of the interior methods.

One approach is to map the infinite region into a finite domain by analytically re-

defining the independent spatial variables. The problem with this approach is that finite-

wavelength components are not resolved properly near the edges of the transformed grid.

The spatial resolution of the grid becomes inadequate to propagate information at wave-

lengths of interest (see, for example, Grosch and Orszag, 1977). Another approach is to

truncate the simulated domain at a finite distance and analytically model the influence of

the exterior world on the domain boundaries. The shorter wavelengths can now propagate

up to the boundaries, but they are partially reflected in a nonphysical way if an exact

analytic condition is not available.

We recommend a combination of these approaches. First, the cells should be made

progressively larger away from the central region of interest, thereby pushing the com-

putational problems far away. By stretching the cells near the edges, or equivalently, by

making them small only in regions of interest, the computational domain can be quite

large without a corresponding increase in computer storage. Errors still arise from lack of

knowledge of the solution in the exterior region. However, these affect the solution only

weakly, and only after a delay for the numerical boundary condition influences to reach the

central region. LCPFCT was specifically formulated to allow variable cell sizes, but the

order of accuracy decreases in regions where the cells are changing rapidly. Cell stretch-

ing should be limited to 10–20% per cell in any direction to control these inaccuracies.

Multidimensional cells with large aspect ratios should also be avoided whenever possible.

In a problem with an open boundary, analytic or phenomenological models can be

used to approximate the values of the simulation variables in the region outside of the

computed domain. The coefficients appearing in Eq. (6.1) are then defined using these

models to convey the desired approximate guard cell dependences to the numerical inte-

gration modules. This is done so the most recently computed values near the edge of the

domain can be combined with the auxiliary information about the exterior behavior of

the solution at each stage of the integration. In this way, potentially unstable numerical

extrapolation off the edge of the computational domain is effectively replaced by a more

stable interpolation.

50

Subsonic and Supersonic Inflow Boundary Conditions

Inflow boundary conditions are often as difficult to implement properly as outflow boundary

conditions, even though it would seem that everything is in fact known about the fluid

entering the system. These difficulties arise because there are characteristics which can

move outward at an inflow boundary which is subsonic. Thus we may not actually be in a

position to specify everything about the fluid entering the system. These uncertainties and

errors are particularly important because the fluid entering the system with errors arising

from nonphysical boundary conditions stays resident for a long time. Thus the errors made

on inflow boundaries often build up more rapidly and pollute the solution more completely

than outflow boundary condition errors.

Table 6.3 summarizes useful choices of SEBC and VEBC appearing in Eq. (3.7) that can

be used to implement subsonic compressible inflow in LCPFCT. Many variations of these

choices are possible and may actually work better than these suggestions for particular

flows or parameter regimes. Nevertheless, because we have been able to perform a wide

range of problems more than adequately with these choice, we recommend at least trying

them in your application.

The physical reasoning behind the definitions made in Table 6.3 is to specify two of the

three inflowing quantities (in one dimension) corresponding to the two fluid characteristics

entering the system. The two quantities chosen are the incoming mass flux and fluid

entropy. This allows the propagation of isentropic pressure pulses (weak acoustic waves)

upstream into the oncoming flow. The pressure of the incoming fluid varies so there is

no pressure gradient at the bounding cell interface. This requires a corresponding change

in the inflow density. This density variation in the inflow in turn requires a velocity

change to keep the mass flux constant. If a pressure pulse from downstream causes the

boundary pressure to go up, the incoming fluid compresses and slows down. The incoming

energy density is computed from the calculated values of the incoming density, velocity,

and pressure (Table 6.3).

This combination of effects appears to mimic a realistic inflow plenum quite well,

preventing numerical effects from driving large, unphysical waves into the system after a

long time.

Supersonic inflow boundary conditions are somewhat simpler since all of the fluid

characteristics are entering the system from the guard cell and can therefore be assumed

to be known. The velocity and pressure at the supersonic inflow boundary are also known

so all of the input to the VELOCITY and SOURCES subroutines are known and the slope

boundary condition factors in the calls to LCPFCT are set to zero.

51

Table 6.3. Inflow Boundary Condition Parameters for LCPFCT (PBC =.false.)

Subsonic Inflow Conditions∗ Slope SEBC Added Value VEBC

Pressure and Mass Density:

PG = PIE

ρG = Vρ Sρ = 0 Vρ = ρinflow

(
PIE

Pinflow

) 1
γ

Momentum Density Parallel to Integration (normal to the boundary):

ρGv‖G = ρinflowv‖inflow S‖ = 0 V‖ = ρinflowv‖inflow

Momentum Density Tangential to Boundary (along the boundary):

ρGv⊥G = ρinflowv⊥inflow S⊥ = 0 V⊥ = ρinflowv⊥inflow

Total Fluid Energy Density:

EG = SE EIE + VE SE = 0 VE = PG
(γ−1) + 1

2ρG(v‖G
2 + v⊥G2)

Supersonic Inflow Conditions∗ Slope SEBC Added Value VEBC

Mass Density, Total Fluid Energy Density:

ρG = ρinflow Sρ = 0 Vρ = ρinflow

EG = Einflow SE = 0 VE = Einflow

Momentum Density Parallel to Integration (normal to the boundary):

ρGv‖G = ρinflowv‖inflow S‖ = 0 V‖ = ρinflowv‖inflow

Momentum Density Tangential to Boundary (along the boundary):

ρGv⊥G = ρinflowv⊥inflow S⊥ = 0 V⊥ = ρinflowv⊥inflow

∗ Subscript G refers to the guard cell, either cell I1− 1 or IN + 1. Subscript IE refers
to the boundary or end cell of the computational domain, either I1 or IN , for the
particular side of the grid being considered. The quantities subscripted “inflow” are
specified by the user external to the LCPFCT modules.

Subsonic, Choked, and Supersonic Outflow Boundary Conditions

The difficulty with outflow boundary conditions is nonphysical reflection of characteristics

which should leave through the boundary. In all but the simplest linear problems, the

boundary algorithms can only be approximate because inward and outward propagating

waves and pulses become locally indistinguishable in the nonlinear fluid dynamic equations.

52

Monotone convection algorithms such as LCPFCT can extrapolate the flow parameters off

the edge of the system by setting guard-cell values as described in section (6.1). In two-

or three-dimensional flows, this extrapolation should be done along the flow lines as a

better approximation to following the characteristics though it is usually done normal to

the boundary to comply with the data structure and logic of the split-step approximation

to multidimensions. In this latter case it makes sense to differentiate regions where the

outflow is predominantly normal to the boundary from those where it is nearly tangential.

Extrapolation is often unstable in linear convection algorithms for which positivity

is not guaranteed. One of the major advantages of monotone methods is their ability

to operate stably and reasonably accurately using such simplifications of characteristic

analysis. By breaking the fluid disturbance into its constituent characteristics, however,

and extrapolating each of these out to the guard cells, more stable, accurate outflow

conditions are obtained even for monotone convection algorithms.

Table 6.4 describes simple boundary conditions for a fluid flowing off the edge of a

finite computational domain. Used with a monotone method, these formulas for guard

cells take into account the continuity of flow in the vicinity of the boundary. The quantity

τ is a characteristic time for relaxation of the pressure to its ambient value at infinity, for

example a characteristic system size divided by the average sound speed. The lowest-order

extrapolation for guard-cell values uses the adjacent cell values for the corresponding guard

cells. That is, τ =∞. The next higher-order extrapolation uses the two cells just inside the

boundary to extrapolate linearly to the guard cells. The values of the variables at or near

infinity, such as ρ∞, feed information about the external world into the computational

domain. Without these terms, that is, with τ = ∞, a simulation cannot relax to the

asymptotic pressure, and this leads to growing errors.

Conditions for Flow Roughly Parallel to an Open Boundary

There is a final case to be considered which occurs when the boundary of the computational

domain is physically unconfined and the flow at infinity is roughly parallel to the boundary.

This is neither the inflow nor the outflow situation as described in the two subsections

because the actual fluid velocity perpendicular to the boundary is neither predominantly

inward nor predominantly outward. Depending on fluctuations and sound waves near the

boundary the fluid could either “breathe” in or out so the relative value of the tangential

velocity is zero and yet the expected momentum and kinetic energy of the fluid are quite

large. In this case the LCPFCT routines should be employed with the boundary condition

parameters as defined in Table 6.5.

53

Table 6.4. Outflow Boundary Condition Parameters for LCPFCT (PBC =.false.)

Subsonic & Supersonic Outflow∗ SEBC VEBC

Outflow Interface Pressure and Velocity:

v‖interface = v‖IE [1− ∆t
τ] Pinterface = PIE [1− ∆t

τ] + ∆t
τ P∞

Mass Density:

ρG = Sρ ρIE + Vρ Sρ = [1− ∆t
τ] Vρ = ∆t

τ ρ∞

where τ is the problem-dependent time constant for relaxation of ρ to ρ∞

Momentum Density Parallel to Integration (normal to the boundary):

ρGv‖G = S‖ρIEv‖IE + V‖ S‖ = [1− ∆t
τ] V‖ = 0

Momentum Density Tangential to Boundary (along the boundary):

ρGv⊥G = S⊥ρIEv⊥IE + V⊥ S⊥ = [1− ∆t
τ] V⊥ = 0

Total Fluid Energy Density:

EG = SE EIE + VE SE = [1− ∆t
τ] VE = ∆t

τ E∞

Different values of τ may be appropriate for density, momentum, energy, etc.

Choked Outflow Conditions∗ SEBC VEBC

Choked Interface Pressure:

Pinterface = PIE

Choked Outflow Interface Tangential Velocity:

v‖interface = vs interface =
(
γPIE
ρIE

)1/2

Mass Density, Total Fluid Energy Density:

ρG = Sρ ρIE + Vρ Sρ = [1− ∆t
τ] Vρ = ∆t

τ ρ∞

EG = SE EIE + VE SE = [1− ∆t
τ] VE = ∆t

τ E∞

Tangential and Parallel Momentum Densities (as above):

∗ Subscript G refers to the guard cell, either cell I1 − 1 or IN + 1. Subscript IE
refers to the boundary or end cell of the computational domain, either I1 or IN , for
the particular side of the grid being considered. The quantities subscripted “∞” are
specified by the user external to the LCPFCT modules and represent the ambient
fluid variables far from the boundary in question.

54

Table 6.5. Parallel Flow Open Boundary Parameters for LCPFCT (PBC = 0)

Parallel Open Boundary Flow∗ SEBC VEBC

Tangential Velocity and Pressure at Interface:

v‖interface = v‖IE Pinterface = PIE

Mass Density, Species Number Densities:

ρG = Sρ ρIE + Vρ Sρ = [1− ∆t
τ] Vρ = ∆t

τ ρexternal

where τ is the relaxation time constant of ρ to ρexternal

Momentum Density Parallel to Integration (normal to the boundary):

ρGv‖G = ρIEv‖IE S‖ = [1− ∆t
τ] V‖ = ∆t

τ ρexternalv‖external

Momentum Density Tangential to Boundary (along the boundary):

ρv⊥G = ρIEv⊥IE S⊥ = 1 V⊥ = 0

Total Fluid Energy Density:

EG = SE EIE + VE SE = [1− ∆t
τ] VE = ∆t

τ Eexternal

Different values of τ may be appropriate for density, momentum, energy, etc.

∗ Subscript G refers to the guard cell, either cell I1− 1 or IN + 1. Subscript IE refers
to the boundary or end cell of the computational domain, either I1 or IN , for the
particular side of the grid being considered. The quantities subscripted “external” are
specified by the user before calling the LCPFCT module and represent the value of
the fluid variables external to the boundary in question.

7. ADDITIONAL INFORMATION

This section discusses some additional information about the use of the LCPFCT package

which may be of use in some situations and which should help to extend a user’s un-

derstanding of the algorithms and the implementation presented here. Topics considered

are additional routines, more about boundary conditions through the use of the subrou-

tines ZEROFLUX and ZERODIFF, flexibility in choosing interface averages, and a brief

discussion of things an advanced user might want to try with the flux-correction formula.

There are a several additional subroutines in the LCPFCT package which provide

flexibility but do not necessarily have to be fit into the normal sequence of FCT calls.

RESIDIFF (DIFFA) allows the user to add a small amount of residual diffusion to

the solution by making the effective antidiffusion coefficients {µi− 1
2
} (MULH in

55

FCT VELO) be slightly smaller that the diffusion coefficients {νi− 1
2
} (NULH). To

do this in LCPFCT, the magnitude of the sign function array, called FSGN in Do

2, need not be exactly unity. A smaller value, for example the default value 0.999, is

transferred to the antidiffusion coefficients and allows a slight residual diffusion that

helps maintain smoother solutions for systems of gas dynamic equations. DIFF1

is carried in common block FCT MISC and can be changed by a call to subroutine

RESIDIFF, whose only argument is the new value of DIFF1. The value of DIFF1

stays at the newly set value until a new call to RESIDIFF is made. This facility is

employed in a couple of the test problems. The value of DIFF1 is defaulted to 0.999

in a block data initializing routine and values less than 0.99 are not recommended.

In some applications where very small Courant numbers are expected, this may lead

to appreciable numerical diffusion in some regions and the user may want to be set

DIFF1 to unity by calling RESIDIFF (1.0000), as is done in the constant velocity

convection tests reprinted in Appendic B and discussed in the next section. This call

can also be used to deliberately introduce some linear second-order diffusion to mimic

the effect of viscosity. Since the nonlinear flux correction will leave additional dissi-

pation in some regions, however, the user must remember that the residual diffusion

may not be all that is present.

COPYGRID (MODE, I1, IN), with MODE = 1 is used to put aside a copy of all the

grid variables generated by the last call to MAKEGRID. The arrays are copied into

another named common block called OLD GRID for subsequent reuse after some or

all of these values may have been changed. Calling COPYGRID with MODE = 2

then subsequently restores all the values from cell I1 to cell IN including the first

and last interfaces. While MAKEGRID could always be called to reset the grid,

restoration from the copied values could save considerable computation – particularly

if the computation of the interface locations, areas, or cell volumes is expensive. An

example of where this is useful is a two-dimensional simulation where the grid is

moving. Each of the NY rows needs to have MAKEGRID called before the half step

and NEW GRID (below) called to change the grid locations to those appropriate to

the end of the timestep. COPYGRID could then be used to restore the grid to its

condition before the most recent call to NEW GRID and prior to beginning integration

of the next row. It is also used in conjunction with SET GRID to calculate cell volumes

more efficiently when angular coordinates are being used.

NEW GRID (RADR, I1, INP) performs the same function as MAKEGRID but is

somewhat faster because the old values of the cell interface locations, RADHO, and

all the variables which depend only on RADHO are assumed unchanged since the

last call to MAKEGRID. This means that a number of quantities do not have to be

recalculated. This facility is useful, for example, when a moving grid at the end of a

56

complete timestep differs from the grid at the end of the half step but both integrations

start from the same ‘old’ grid.

SET GRID (FACTOR, I1, IN) is used when a multidimensional FCT model has one

of the dimensions as an angular coordinate. In two dimenions it allows more efficient

treatment of terms of the form
1

r

∂ρ

∂θ
(7.1)

where r and θ are the orthogonal radial and angular coordinates. For such a term,

a cell area can be treated as a constant independent of radius, and a cell volume is

proportional to radius, Λi = rj(θi+ 1
2
− θi− 1

2
), where rj is the radius of the jth row

and θi+ 1
2

is the angle of the ith cell interface. In spherical coordinates the angle θ

is replaced by ζ ≡ cosθ with ∂ζ = sinθ∂θ to obtain the equivalent ‘Cartesian-like’

coordinate. The integration in the θ direction is performed with ALPHA set equal

to one in the call to MAKEGRID. This call is located outside the loop over radius.

Provisional cell volumes which are computed as the differences of the θ ’s are stored

in the arrays LOP and LNP and are contained in common block OLD GRID when

COPYGRID is called with MODE = 1. Inside the loop over radius SET GRID must

be called with the argument RADR being the mean radius of the cell j and with I1

and IN being the first and last cells to be integrated. SET GRID will multiply the

(θo,n
i+ 1

2

− θo,n
i− 1

2

) terms by the current cell radius rj . This includes the radial effect in

the cell volume calculation with only a single multiply for each row. This provides

significant savings in the computational effort for obtaining cell volumes for each jth

row.

In Section 5 we discussed two routines called ZEROFLUX and ZERODIFF which

modify the velocity dependent coefficients for certain specific boundary conditions where

no fluxes or no diffusion across certain interfaces can be allowed on physical grounds.

These requirements usually apply at the ends of the computational domain but there are

circumstances, for example at a Lagrangian interface between two different materials or

phases, where no flux of mass can be allowed in the frame of reference moving with the

fluid. In this case ZEROFLUX (Interface) is called where ‘Interface’ is the Index of the

interface separating the two phases, for example air and water. ZEROFLUX is also used

at ideal solid walls to ensure that absolutely no flux into or out of the wall is allowed. By

calling ZEROFLUX just before a particular continuity equation is solved, fluxers through

the interface are permitted for all of the previously integrated equations.

ZERODIFF was designed to treat a slightly different problem: it turns off the diffusion

and antidiffusion fluxes at chosen cell interfaces without affecting the convective fluxes.

This can be used where there is a physically correct convective flux but where the numerical

diffusion and/or antidiffusion would result in non-physical behavior. This routine should be

57

used for supersonic outflow conditions where the diffusion (or antidiffusion) might otherwise

move some mass, momentum, or energy upstream in the flow. At inflows where the

incoming fluxes are known, the guard cell values may not be exactly equal to the computed

values just inside the mesh. There ZERODIFF is also used to ensure that the diffusion and

antidiffusion terms can not change the prescribed fluxes entering the system. Examples

using these routines are seen in the test problems and indicated in Tables 5.6–5.8.

As indicated repeatedly in the text, the LCPFCT routines rely on interface averaged

quantities as inputs in several places. There is a great deal of freedom in computing these

averages from the cell values on either side of the interface. In calculating the interface

velocities, for example, the simple calculation,

vi− 1
2
≡ vi + vi−1

2
, (7.2)

could as well be computed as

vi− 1
2
≡ ρivi + ρi−1vi−1

ρi + ρi−1
. (7.3)

This density-weighted average in Eq. (7.3) is equivalent to calculating the velocity at the

interface from the average momentum divided by the average density.

There are infinitely many choices for these averages and there seems to be no com-

pelling reason why {ρi− 1
2
}, {vi− 1

2
}, {Pi− 1

2
}, and {(Pv)i− 1

2
} all have to be computed the

same way. In Appendix C, Subroutine GASDYN performs these averages for LCPFCT

Tests #2, #3, and #4 in yet another way. In the Do 200 loop, an inverse density weight-

ing,

Pi− 1
2
≡ ρiPi−1 + ρi−1Pi

ρi + ρi−1
, (7.4)

is used not only for the pressure at the interfaces but also for the velocities and the pressure–

velocity product. This is physically equivalent to calculating the pressure at the interface

from the average of the squares of the sound speed in the two adjacent cells. The higher

the sound speed the faster pressure is communicated so this choice in Eq. (7.4) makes as

much physical sense as the simple average in Eq.(7.2) or the density weighted average in

Eq. (7.3). In GASDYN the equations implementing the simple average of Eq. (7.2) are

also included as comments following the Do 200 loop in case the user wants to do a little

experimenting.

In Subroutine VELOCITY there is also appreciable flexibility possible in choosing

{νi− 1
2
} and {µi− 1

2
}, the diffusion and antidiffusion coefficients NULH and MULH. The

calculation involving SCRH is not strictly necessary but seems to improve the quality

of the solutions of the convection test problem (Appendix B) a little without degrading

58

the quality of the other three test problem solutions. SCRH subtracts a very small

fourth-order velocity correction from the diffusion and then increases both the diffusion

and antidiffusion by the same small second order amount. This latter correction has no

effect on the residual diffusion of the algorithm but changes the pahse errors slightly,

improving and symmetrizing the solutions for all three convection profiles. By setting

SCRH identically to zero, the user can verify that the absolute error measures of the

convection problems do indeed increase.

In addition to the straightforward application of the LCPFCT routines, there are some

tricks which help to give better solutions when the numerics are being stressed very hard.

One of these is the use of minimum values. It is generally useful if the pressure is limited

from below to be no smaller than some minimum value in computing the source terms for

the momentum and energy equations in gas dynamic problems. This value is generally

chosen to be one order of magnitude less than the smallest pressure that is physically

expected. This prevents extreme undershoots in pressure occuringin problems involving

strong shock waves. Also, when computing the velocity by dividing the fluid momentum

by the density it is sometimes helpful to limit the value of the density used in the divisor to

some minimum value. These ad hoc fixes are helpful because while the primary variables

being integration by LCPFCT are guaranteed to be monotonic, the derived quantities such

as velocity and pressure may not be monotone in the vicinity of steep gradients such as

occur naturally at shocks. The effect of the use of these minimum values is highly localized

since global conservation of the conserved quantities is still being maintained.

59

8. TEST PROBLEMS

In this section we describe four test problems that illustrate the application and capabilities

of LCPFCT and provide benchmarks of the algorithms. A complete listing of the LCPFCT

subroutines is given in Appendix A. The four test programs and selected reference outputs

are given in Appendices B, C, D, and E.

1. The first test program, Appendix B, shows tests of linear convection with a fixed

uniform velocity. Three different density profiles are convected, a discontinuous square

wave profile, a semicircular profile, and a Gaussian peak profile. The program uses

either the LCPFCT routine or the CNVFCT routine for this test; they are identical

in the limit that the velocity field is constant.

2. The second test program propagates an ideal, one-dimensional, Rankine-Hugoniot

shock through a gas with γ = 1.4. This program, listed in Appendix C, demonstrates

the coupling of several continuity equations to solve a standard gasdynamic problem.

3. The third test program, Appendix D, simulates a one-dimensional exploding di-

aphragm (in a shock tube). This problem shows another example of gasdynamics

with different boundary conditions and illustrates FCT’s dynamic grid features.

4. The fourth test program is two dimensional and simulates the flow following the

bursting of a diaphragm halfway up a finite length barrel. This program, in Appendix

E, demonstrates the time splitting multidimensional implementation of LCPFCT on

a geometrically complex domain and uses a simple extrapolated outflow condition.

For each test problem, we provide the driver program and selected printed outputs to

five significant digits. This provides the basis for a fairly complete detection of any errors

which might creep as the program is transferred, copied, or due to any Fortran or computer

system incompatibilities. The five-digit printout comparisons should typically be adequate

for validation on any computer with 32-bit or greater accuracy.

8.1 Constant Velocity Convection – LCPFCT Test #1

The first test program convects three different density profiles across a uniform grid at

a constant velocity with periodic boundary conditions. The three density profiles chosen

are a square wave (top-hat profile) 20 cells across, a semicircular density profile with a

radius (called WIDTH) of 10 cells, and a Gaussian peak with a characteristic half width

of five cells. These are all standard profiles for comparing numerical convection algorithms.

The system length, NX, is 50 cells, the constant convection velocity, V ELX = 1.0, and

the calculation is carried out for MAXSTP = 500 timesteps with DT = 0.2 and DX =

1.0. Thus the nondimensional Courant number, ε ≡ V ELX × DT/DX = 0.2, is 40%

of the maximum allowed by this FCT algorithm. The standard run is long enough for

60

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

D
e

n
si

ty

0 1 0 2 0 3 0 4 0 5 0

step 500

step 250

step 000

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

D
e

n
si

ty

0 1 0 2 0 3 0 4 0 5 0

step 500

step 250

step 000

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

D
e

n
si

ty

0 1 0 2 0 3 0 4 0 5 0

X at cell interfaces

step 500

step 250

step 000

Figure 8.1 Results of the convection tests with LCPFCT on a) square wave profile, b)
circular arch profile, and c) gaussian peak profile after 250 and 500 timesteps with a
Courant number of 0.2.

61

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

D
e

n
si

ty

0 1 0 2 0 3 0 4 0 5 0

X at cell interfaces

step 500

step 250

step 000

the density profiles to travel across the mesh twice, coming back to the initial position

each time because periodic boundary conditions are used. This type of calculation with

periodic boundary conditions is a good test of the algorithm’s numerical fidelity because

the successive profiles should exactly overlay each other.

Listings of the program used to generate these results along with the printed output

at steps 125 and 500 are given in Appendix B. The printed solutions labeled as ‘exact’ at

step 500 are also the initial conditions for each of the profiles. These results for the three

different test profiles are also shown in Figure 8.1 for steps 250 and 500 overlaid on the

initial conditions. The quantities marked ‘absolute error’ at the bottom of the printouts

are the sum of the absolute values of the differences between the computed solution and

the exact solution normalized by the conserved sum of the density values for each of the

profiles. The exact (analytic) solution is found by following a translating grid on which the

solution remains exact and performing a simple numerical integration to get the correct

average of the chosen profile over each cell.

Figure 8.2 Convecting the square wave profile using LCPFCT with enhanced antidiffu-
sion. The values of the coefficients MULH in common block FCT VELO have been in-
creased 2%. The density profile after 250 and 500 timesteps of convection with a Courant
number of 0.2 is overlaid on the initial conditions.

A linear convection algorithm has amplitude, phase, and Gibbs errors which cause

the numerical solution to deviate from the expected theoretical solution. Since FCT is

intrinsically nonlinear, these three types of errors are mixed together, reappearing as profile

‘rounding,’ ‘terracing,’ and ‘clipping.’ The solutions shown in Figure 8.1 illustrate these

three different types of error. Because of the particular test profiles chosen, each of these

types of error is best illustrated by a different profiles. The corners of the square wave are

62

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

D
e

n
si

ty

0 1 0 2 0 3 0 4 0 5 0

step 500

step 250

step 000

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

D
e

n
si

ty

0 1 0 2 0 3 0 4 0 5 0

X at cell interfaces

step 500

step 250

step 000

‘rounded’ somewhat to generate a modified profile that propagates essentially unchanged.

In the semicircular profile, a small ‘terrace’ forms around cell 25 where phase errors deform

the shape of the convected profile somewhat until a new maximum begins to appear where

the slope is relatively small. This new extremum is prevented by the antidiffusive flux

limiter, leading to the terrace. In the gaussian peak problem, the rather sharp peak is

‘clipped’ off. The diffusion stage reduces the height of the two highest points and then the

flux corrector prevents the antidiffusion flux from reconstituting these peaks.

Figure 8.3 Results of the convection tests with LCPFCT on the, a) semicircular density
profile, and the b) gaussian peak density profile after 250 and 500 timesteps with a Courant
number of 0.2. The values of the coefficients MULH in common block FCT VELO have
been increased 2%.

It is difficult to do anything about the phase errors at short wavelength which lead,

in particular, to the terracing effect but it is tempting to try to reduce the rounding and

63

RHOAMB

VELAMB

PREAMBRHO_IN
VEL_IN

PRE_IN

i = 1 i = MX+1 i = NX+1

diaphragm

clipping by modifying with the amount and conditions of the flux-correction procedure. For

example, the antidiffusion coefficients in the LCPFCT algorithm can be increased slightly

by multiplying the NX+1 values of µi+1/2 (MULH) by a value slightly larger than unity.

This makes the linear algorithm slightly unstable but improves the fidelity of physically

discontinuous or nearly discontinuous solutions significantly, as seen in Figure 8.2 for the

square wave profile. In Figure 8.2 the number of zones in the numerically approximated

discontinuity is 2 or 3 while it is 4 or 5 in Figure 8.1a. Further there is virtually no

additional rounding evident between steps 250 and 500 in Figure 8.2.

Some monotone methods employ ‘contact surface steepeners’ such as just described in

regions of flow where contact surfaces can be identified. These techniques should be used

with caution, however, because their long term numerical stability depends totally on the

nonlinear action of the flux corrector. Figure 8.3 shows the results of using this approach

on the second and third profiles which are not as discontinuous as the square wave. It

can be seen that enhancing the antidiffusion trys to turn even smooth profiles into square

waves. The terracing is enhanced significantly in Figure 8.3a and the clipping is much more

extreme in Figure 8.3b. The bases of the profiles are pulled in and the tops broadened out

while still conserving the total integral under the curve and the mean position of the fluid.

8.2 Progressing One Dimensional Gasdynamic Shock – LCPFCT Test #2

Figure 8.4 Schematic diagram showing the one-dimensional geometry and key initial
parameters for the Progressing Shock Test and the Bursting Diaphragm Test.

In one dimension the equations of ideal gasdynamics can be written as three nonlinearly

coupled continuity equations. In Section 4 we showed how LCPFCT can be used to solve

each of these continuity equations through a structured sequence of calls. Appendix C,

which contains the Fortran program conducting this progressing shock test, also includes

a subroutine called GASDYN which captures this series of calls to LCPFCT and its sup-

64

- 4

- 3

- 2

- 1

0

1

2

3
V

e
lo

ci
ty

0 1 0 2 0 3 0 4 0 5 0

X at cell interfaces

t = 10.0

t = 7.5

t = 5.0

t = 2.5

t = 0.0

Figure 8.5 Velocity profiles at intervals of 50 timesteps from the LCPFCT Progressing
Shock Test – Problem #2. The shock velocity, V0, was chosen as 3.0 so the shock moves
7.5 cells in each interval.

porting routines. GASDYN can be used in a number of circumstances including Tests #3

and #4 below.

Figure 8.4 shows the initial configuration for a progressing shock problem. The shock

moves in the positive X direction with a velocity V 0 = 3.0. The fluid, entering the system

on the right at velocity V ELAMB = −2.9161, is a Mach 5 flow relative to the oncoming

shock. The ambient (preshock) density isRHOAMB = 1.0 and the corresponding pressure

is PREAMB = 1.0. Inside the shocked region, initialized to the left of interface 11 in this

case, the fluid conditions are V EL IN = 1.8168, RHO IN = 5.0, and PRE IN = 29.0.

In this progressing shock test program and the one for the bursting diaphragm discussed

below, a fourth variable RV TN , denoting an unused transverse momentum, is initialized

to zero. This variable is important in two-dimensional flows and allows GASDYN to be

used as well for Test #4, the two-dimensional “muzzle flash” problem. The boundary

conditions chosen are of type 4 for the calls to GASDYN, meaning that fixed, known

values are enforced on the guard cell variables and thus allowed to enter the computational

domain. The system is NX = 50 cells long and DELTAX = 1.0. The timestep DELTAT

is fixed at 0.05.

The ideal propagating shock is self steepening so its computation using LCPFCT

reaches a limiting profile as it moves across the grid. This profile is physically correct

and numerically stable though it is not completely steady in time. Since the location

of the shock relative to the cell center changes from one step to the next, the profile

changes slightly. Small fluctuations arise as the shock progresses from one cell to the next,

65

depending on the one or two cells involved in the transition from the pre-shock to the

post-shock conditions and exactly where in the cell the shock resides.

The outputs reproduced in Appendix C, step 0 (t = 0.0), step 150 (t = 7.5), and step

200 (t = 10.0), show that the pressure and velocity have small nonmonotone undershoots

of order 0.1% just in front of the shock. This error is so small that the effect cannot be

seen in Figure 8.5. It occurs because the shock is so steep that the energy density and

momentum density transitions only have to get a little bit out of phase for quantities

derived from two or more of the primary conserved variables, like the pressure or the

velocity, to show structure not seen in the primary variables themselves. There has been a

substantial amout of work over the years concerned with such issues for algorithms where

the effects are orders of magnitude worse. In most circumstances where the unwanted

effects are very small, as in the cases here, the cure can be worse than the disease.

8.3 One-Dimensional Bursting Diaphragm Problem – LCPFCT Test #3

The bursting diaphragm test, also illustrated in Figure 8.4, solves the ideal one-dimensional

equations of gas dynamics for the classical shock tube problem: an initial condition in which

two uniform perfect gases at rest are separated by a diaphragm which breaks cleanly and

instantaneously at time zero. The region to the left of the interface at MX + 1 = 61

consists of a gas at 10 times the pressure on the right but at the same density. That

is, RHOAMB = RHO IN = PREAMB = 1.0, PRE IN = 10.0, and V ELAMB =

V EL IN = 0.0. The system has NX = 100 cells with DELTAX = 1.0 initially. In this

test, the grid is adaptively changed in time as described below.

The boundary conditions chosen are of type 1 for the call to GASDYN specifying

ideal hard reflecting end walls. Since the gridding is such that the solution does not reach

either end of the computational domain and the external solutions on the right and left are

constant states, this choice is not unique or even important. The timestep was held fixed

at DELTAT = 0.05 because the grid variations are relatively small. Tabulated results are

printed at steps 0, 100, 200, and 1600 in Appendix D. These include times before and after

the grid stretching is started and show the approach to the expected theoretical similarity

solution. Listings of the test program are also given in Appendix D.

Figure 8.6a shows the computed density profiles (RHON) at times 5.0 (step 100), 7.5

(step 150), and 10.0 (step 200) before the grid has begun to expand adaptively with the

solution. This initial transient has four flow characteristic surfaces forming from the single

diaphragm discontinuity and separating. They bound three distinct broadening regions

which only become well resolved after some time. In the figure the rightmost region, lead

by a shock and followed by a contact surface, moves off to the right and is centered around

X = 20 at time 10.0 when the grid stretching is begun. Figure 8.6b shows four of the

66

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

M
as

s
D

en
si

ty

- 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0

X at cell interfaces

t = 10.0

t = 7.5

t = 5.0

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

M
as

s
D

en
si

ty

- 6 0 - 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0

Similarity Variable

t = 80.0

t = 40.0

t = 20.0

t = 10.0

Figure 8.6 Evolution of the mass density profile for the bursting diaphragm problem,
LCPFCT Test #3. a) Initial transient evolution on a ‘fixed’ grid. b) Evolution on an
expanding grid showing approach to the analytic similarity solution.

density profiles at times 10.0 (step 200), 20.0 (step 400), 40.0 (step 800), and 80.0 (step

1600). At the beginning of this sequence (step 200), the grid begins to linearly stretch at

a rate of V/X = .0775 which causes the various characteristic surfaces in the flow to come

to rest in the stretching grid. A look at the program in Appendix D will show how this is

implemented using MAKEGRID.

67

- 1

0

1

2

3

4

M
om

en
tu

m
 D

en
si

ty

- 6 0 - 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0

t = 80.0

t = 40.0

t = 20.0

t = 10.0

0

2

4

6

8

1 0

1 2

1 4

1 6

E
ne

rg
y

D
en

si
ty

- 6 0 - 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0
Similarity Variable

t = 80.0

t = 40.0

t = 20.0

t = 10.0

Figure 8.7 a) X momentum density (RVXN) and b) energy density (ERGN) shown at
timesteps 200, 400, 800 and 1600 after grid expansion has begun. The horizontal axis is
the similarity variable acheived by expanding the grid.

Figure 8.7 shows that same convergence of four computed solutions toward the ex-

pected similarity solution for the momentum density (RVXN) and the energy density

(ERGN). The terracing exhibited by the early solutions in the rarefaction wave region

to the left of the initial location of the diaphragm has almost disappeared as the solution

progresses. Since the grid was already being moved in this test, we superimposed a small

oscillation from one step to the next whose amplitude is controlled by DX OSC in the

68

RHOAMB

VELAMB

PREAMB

RHO_IN

VEL_IN

PRE_IN

1 16 26 41
1

11

21

41

ideal

solid

wall

outflow

outflow

axis of
symmetry

solid wallI

J

program, here chosen rather arbitrarily as 0.125. This flexibility to move the cells around

rather arbitrarily, as long as interfaces don’t cross each other, is very useful in Lagrangian,

quasi-Lagrangian, and adaptively gridded “sliding rezone” calculations.

8.4 Two-Dimensional Muzzle Flash Problem – LCPFCT Test #4

Figure 8.8 Diagram of the geometry and initial conditions of the two-dimensional muzzle
flash problem – LCPFCT Test #4. The cylindrical wall (“muzzle”) is 1.0 cm thick and
2.0 cm long. The pressure ratio behind the diaphragm is 1000:1 and the density ratio is
100:1.

Here we show how timestep splitting is used to solve the ideal two-dimensional equations

of gasdynamics with the LCPFCT modules. This listing in Appendix E shows how to

set up the calls to the grid subroutine and impress boundary conditions for a diaphragm

problem like Test #3 but this time in a cylindrical barrel. Figure 8.8 shows the geometric

configuration and dimensions of the distinct regions in this problem. After the shock has

formed just above the diaphragm at interface J = 11, it progresses for a short distance in

a restricted one-dimensional manner and then flashes out of the muzzle and expands in

an axisymmetric manner. Simple outflow boundary conditions, BC OUTF , are applied

to the upper and right boundaries at interfaces J = 41 and I = 41 respectively. The

lower boundary at interface J = 1 and the axis at interface I = 1 were solved with

reflecting boundary conditions, BC WALL and BC AXIS respectively. The calculation

is performed on a 40 × 40 uniformly spaced rectangular grid with DR = DZ = 0.1. The

equations are not integrated inside the ideal solid cylindrical wall shown in Figure 8.6.

69

 1111111111222222222233333333334
 1234567890123456789012345678901234567890

 40 FFF EE D C B A +---+AA B +
 39 FF EE D B A +----AA B +
 38 GGGG F EE D C A +---- A BBB+
 37 GGGGG FF EE D C A +----++ BBB+
 36 GGGGGGG FF E DD A + +++ BBB+
 35 GGG FF EE D AA+ + ++ABBBB
 34 GGG F E D B A++++ ++ABBB
 33 GG F E D A ++++--+ BBBA
 32 GG F D C A +---
 31 GG F ED CBA ---- +
 30 G FF ED CBA +---
 29 HHHHHH GG F ED -----+A A
 28 HHHHHHHH G ED BA ---- +A
 27 HHHHHHHHHH G EDCB +----- AA +
 26 HHHHHHHHHH G FED B ------+AAAAA
 25 HHHHHHHHHHH G FED B -----+ AAAA+
 24 HHHHHHHHHHHH G ED ---- AAAAA
 23 HHHHHHHHHHHH EC---- AAAAA+
 22 ************HHGD-----+ AAAA A
 21 ************** C-----+ AAAA +
 20 ***************HHHHHHHHHH AA
 19 ***************HHHHHHHHHH+++
 18 ***************HHHHHHHHHH++
 17 ***************HHHHHHHHHH
 16 ***************HHHHHHHHHH
 15 ***************HHHHHHHHHH
 14 ***************HHHHHHHHHH
 13 ***************HHHHHHHHHH
 12 ***************HHHHHHHHHH
 11 ***************HHHHHHHHHH
 10 ***************HHHHHHHHHH
 9 ***************HHHHHHHHHH
 8 ***************HHHHHHHHHH
 7 ***************HHHHHHHHHH
 6 ***************HHHHHHHHHH
 5 ***************HHHHHHHHHH
 4 ***************HHHHHHHHHH
 3 ***************HHHHHHHHHH
 2 ***************HHHHHHHHHH
 1 ***************HHHHHHHHHH

 1111111111222222222233333333334
 1234567890123456789012345678901234567890

 40 AAAA ++ -------------------
 39 BBB AAAA ++ -------------------
 38 BBBBBBBB AAAA ++ -------------------
 37 BBBBBBBB AAA ++ -------------------
 36 BBBBBBBB AA ++ --------------------
 35 BBBBB AA ++ --------------------
 34 BBBB AA ++ --------------------
 33 CC BBB AA ++ --------------------
 32 CCCCCC BBB A ++ --------------------
 31 CCCCCCCC BB A + ---------------------
 30 CCCCCCCC BB A + ---------------------
 29 CCCCC BB A + ---------------------
 28 CCCC B A +----------------------
 27 DDD CCC BBA ----------------------
 26 DDDDDD CC BA+ ----------------------
 25 DDDDDDDD CC BA+-----------------------
 24 DDDDDDDDDD C BA+-----------------------
 23 DDDDDDDDDDD CB ---------------------
 22 DDDDDDDDDDD C +----------------------
 21 DDDDDC ----------------------
 20 DHHHHHHHHHH-----------
 19 HHHHHHHHHH-----------
 18 HHHHHHHHHH---------- ++
 17 HHHHHHHHHH-------- ++++
 16 HHHHHHHHHH ----- +++++
 15 HHHHHHHHHH ++++++
 14 EEEEEEEEEEEEE HHHHHHHHHH ++++
 13 EEEEEEEEEEEEEEEHHHHHHHHHH +++++
 12 EEEEEEEEEEEEEEEHHHHHHHHHH +++++++++
 11 EEEEEEEEEEEEEEEHHHHHHHHHH+++++++++++++
 10 EEEEEEEEEEEEEEEHHHHHHHHHH+++++++++++++
 9 EEEEEEEEEEEEEEEHHHHHHHHHH+++++++++++++
 8 EEEEEEEEEEEEEEEHHHHHHHHHH+++++++++++++
 7 EEEEEEEEEEEEEEEHHHHHHHHHH+++++++++++++
 6 EEEEEEEEEEEEEEEHHHHHHHHHH+++++++++++++
 5 EEEEEEEEEEEEEEEHHHHHHHHHH+++++++++++++
 4 EEEEEEEEEEEEEEEHHHHHHHHHH+++++++++++++
 3 EEEEEEEEEEEEEEEHHHHHHHHHH+++++++++++++++
 2 EEEEEEEEEEEEEEEHHHHHHHHHH +++
 1 EEEEEEEEEEEEEEEHHHHHHHHHH +++

step 150

step 400

r r

z

jj

i i

The initial conditions were formed by setting the entire mesh to an ambient values,

RHOAMB = 0.00129, V ELAMB = 0.0, and PREAMB = 1.013× 106, for the density,

velocity and pressure. We then created a region 10 cells high inside the barrel and below

the diaphragm with RHO IN = 0.129 and PRE IN = 1.103× 109, one hundred and one

thousand times ambient respectively. The fluid everywhere was assumed to be a perfect

gas with γ = 1.4.

Figure 8.9 Character contour plots of the solution to the two-dimensional muzzle flash
problem at two different times a) step 150, and b) step 400.

The calculation is performed in R–Z cylindrical geometry by specifying IALFR = 2

rather than 1 in the appropriate call to MAKEGRID for integrations in the radial direction.

In the way LCPFCT is implemented, the first row and first column are one half zone from

the reflecting boundaries. This facilitates conservation checks and simplifies application

of the boundary conditions since the the first row and column represent a full cell and

conservation can be enforced by requiring the fluxes through the boundaries to be zero.

Results are shown as printouts of two lines through the two dimensional arrays at steps 150

and 400. A simple variable timestep capability is included with this test to show one easy

70

way to do this. The square root of the energy divided by the density gives a reasonable

approximation to the fastest characteristic speed in the problem. Therefore the maximum

of this speed over the grid is used to estimate a suitable timestep for the next step of

integration.

The listing of the driver program and the printed results are in Appendix E. Fig-

ure 8.9 shows two simple character contour plots of the density computed by this model

for timesteps 150 and 400 at times 25.06µsec and 75.06µsec of the calculation respectively.

In Figure 8.9a the flow has just left the muzzle and is reaching the upper boundary. This

shows flow exiting the computational domain with no appreciable numerical reflection

through the implementation of boundary condition 2. At the later time of Figure 8.9b,

the extrapolated outflow conditions at the radial boundary has also come into play and is

showing no reflection of a purely numerical origin. This simple outflow boundary condition

is implemented in subroutine GASDYN.

Since the GASDYN subroutine provided for the earlier LCPFCT Test #2 and Test #3

included provision for a second transverse momentum RV TN , it can be used as well for this

two-dimensional problem. In a production environment, it is best to have different versions

of GASDYN to reduce the confusion in the programming and unnecessary statements and

tests in the Fortran related to directions and variables not being used. Here however,

using the same code reduces the number of different programs while showing just how

straightforward this approach to fluid dynamics is. The extension of this test program and

the subroutine GASDYN to three dimensions is also a rather easy modification. Indeed,

the simplicity and efficiency of FCT algorithms has led to their ready adaptation to efficient

parallel processing, e.g., Gustafson et al. (1988) and Oran and Boris (1991).

Since FCT is designed to solve general continuity equations, complex fluid dynamic

interactions involving rotational flow and turbulence can be simulated as easily as the

transient shock and blast problems used as examples here. Furthermore, extensive tests

performed with FCT and monotone algorithms, for example by Edgar and Woodward

(1991), and Boris et al. (1992), indicate that these methods behave as large eddy models

are expected to behave for high Reynolds number flows. The flux-correction procedure adds

a local, solution-dependent dissipation to the overall fluid dynamic simulation much as an

eddy viscosity (diffusivity) would, coverting nonlinearly generated, unresolvable structure

in the computed flow to heat, modeling the effect of a physical viscosity acting at the small

scales of a turbulent cascade.

71

9. SUMMARY

This report has described a series of subroutines which, as a library, constitute the For-

tran implementation of the LCPFCT algorithm. This version of the FCT algorithm is the

culmination of two decades for research into FCT algorithms and represents the natural

extension of the previous ETBFCT and PRBFCT subroutines. We have attempted to

make these subroutines as general as possible without appreciably sacrificing simplicity or

efficiency. The routines, as they stand, treat a wide range of geometries, grid configura-

tions, boundary conditions, and source terms. “Hooks” have been left in these routines to

add additional geometries and source terms and some of these advanced capabilities are

discussed briefly in Section 7. The programs and documentation both indicate places where

an advanced user may wish to make other changes such as employing different weighted av-

erages for computing interface quantities from the cell-averaged conserved variables. This

report describes only the low-phase error, one-dimensional FCT algorithm in the context

of a two-stage Runge-Kutta time integration but this is the version which we have found

easiest to implement on different computers including a number of parallel processing sys-

tems and easiest to teach to people who are just learning CFD and need to get good

multidimensional results in a short period of time.

Here we would like to reiterate the philosophy behind the data and program structure

adopted in LCPFCT. To solve Eq. (1.1) numerically for even one timestep requires a great

deal of input data and many independent calculations. The logically separate components

of this calculation, 1) the data structures used, 2) the geometry of the computational

domain, 3) the system of continuity equations being solved, and 4) the algorithms used

to solved each of these continuity equations, have been built into a hierarchical program

with distinct subroutines requiring separate calls. This separation of function has two

advantages. First, many different types of calculations can be performed using the same

code by mixing and matching various functions (subroutines) in different orders and with

different arguments. Second, functions and calculations which are common to large regions

of the computational domain or to several different continuity equations or which are

unchanged over several timesteps do not need to be performed more than once. Thus

optimization is achieved by eliminating many repeated calculations even though a slight

extra expense is sometimes incurred to construct extra calling sequences made necessary

by the strict separation of function employed in the subroutines.

As a final note of caution, we point out that while the LCPFCT routines have been

checked out carefully, by no means has every possible application been tested. Many com-

binations of calls and valid applications have not yet even been thought of. Thus there

may be bugs which appear in new applications. This warning is particularly important

because FCT algorithms are notoriously forgiving and uncomplaining. They seldom blow

72

up (unless U δt
δx > 1

2), but rather the solution degrades gracefully and unspectacularly.

This may sound like an advantage but it can be extremely misleading since many poten-

tial users may be accustomed to methods which fall apart quickly when there are even

minor difficulties. Be skeptical; always check your numbers carefully, particularly near the

boundaries. Do not just look at the exponents of the answers or the general (graphical)

properties of your solutions.

Any suggestions for improvements, either for the subroutines or for this exposition

will be gratefully received by the authors and valid changes incorporated in future edi-

tions/printings.

Acknowledgments

We would like to acknowledge the work and contributions of our many colleagues at NRL

and elsewhere who have participated in the development of flux-corrected transport al-

gorithms over the last two decades. David Book, C. Richard DeVore, K. Kailasanath,

Fernando Grinstein, Raafat Guirguis, Chiping Li, B. Edward McDonald, Gopal Patnaik,

Stephen Zalesak, and have contributed to the theoretical development and understanding

of FCT algorithms, have invented new FCT algorithms, have undertaken extensive testing

and analysis of the performance of various FCT algorithms, and have used these methods

in the performance of large-scale CFD research for the Navy, DoD, and the United States.

This work involved in preparing this report has been supported by the Defense Ad-

vanced Research Projects Agency, the Office of Naval Research, and the Naval Research

Laboratory. The development of the original Flux-Corrected Transport algorithms was

supported by DNA, DOE and NRL.

73

REFERENCES

Baer, M.R., and R.J. Gross, 1986, A Two-dimensional Flux-Corrected Transport Solver

for Convectively Dominated Flows, SAND85–0613, Sandia National Laboratories, Al-

buquerque, NM.

Book, D.L., and J.P. Boris, 1981, Finite-Difference Techniques for Vectorized Fluid Dy-

namics Calculations, Chapter 2, Springer-Verlag, New York.

Book, D.L., C. Li, G. Patnaik, and F.F. Grinstein, 1991, Quantifying Residual Numerical

Diffusion in Flux-Corrected Transport Algorithms, J. Sci. Comp. 6 (3): 323-343.

Boris, J.P., 1971, A Fluid Transport Algorithm that Works, in Computing as a Language

of Physics, International Atomic Energy Agency, Vienna, 171–189.

Boris, J.P., 1976, Flux-Corrected Transport Modules for Generalized Continuity Equations,

NRL Memorandom Report 3237, Naval Research Laboratory, Washington, DC.

Boris, J.P., F.F. Grinstein, E.S. Oran, and R.L. Kolbe, 1992, New Insights into Large Eddy

Simulation, to appear, Fluid Dynamics Research.

Boris, J.P., and D.L. Book, 1973, Flux-Corrected Transport I: SHASTA — A Fluid Trans-

port Algorithm that Works, J. Comp. Phys. 11: 38–69.

Boris, J.P., and D.L. Book, 1976, Solution of the Continuity Equation by the Method of

Flux-Corrected Transport, Methods in Computational Physics 16: 85–129.

Colella, P., and P.R. Woodward, 1984, The Piecewise Parabolic Method (PPM) for Gas-

Dynamical Simulations, J. Comp. Phys. 54: 174–201.

DeVore, C.R., 1989, Flux-Corrected Transport Algorithms for Two-Dimensional Compress-

ible Magnetohydrodynamics, U.S. Naval Research Laboratory Memorandum Report

6544.

DeVore, C.R., 1991, Flux-Corrected Transport Techniques for Multidimensional Compress-

ible Magnetohydrodynamics, J. Comp. Phys. 92: 142–160.

Edgar, B.K., and P.R. Woodward, 1991, Diffraction of a Shock Wave by a Wedge: Com-

parison of PPM Simulations with Experiment, AIAA Paper 92–0696: 1–29.

Fyfe, D.E., and G. Patnaik, 1991, Parallel Implementation of Multi-Dimensional FCT

on Non-Orthogonal Meshes, Proceedings, 4th International Symposium on Computa-

tional Fluid Dynamics, Davis CA.

Givoli, D., 1991, Non-Reflecting Boundary Conditions, J. Comp. Phys. 94: 1–29.

74

Godunov, S.K., 1959, Finite Difference Methods for Numerical Computation of Discontin-

uous Solutions of the Equations of Fluid Dynamics, Mat. Sb. 47: 271–306.

Grinstein, F.F., 1992, Open Boundary Conditions in the Simulation of Subsonic Turbulent

Shear Flows, submitted to J. Comp. Phys.

Grinstein, F.F., and R.H. Guirguis, 1992, Effective Viscosity in the Simulation of Spatially

Evolving Shear Flows with Monotonic FCT Models, J. Comp. Phys. 101: 165–175.

Grosch, C.E., and S.A. Orszag, 1977, Numerical Solution of Problems in Unbounded Re-

gions: Coordinate Transformations, J. Comp. Phys. 25: 273–295.

Gustafson, J.L., G.R. Montry, and R.E. Benner, 1988, Development of Parallel Methods

for a 1024-Processor Hypercube, SIAM J. Sci. Stat. Comp. 9: 609–638.

Harten, A., 1974, The Method of Artificial Compression, CIMS Rept. COO-3077-50,

Courant Institute, New York University, New York.

Harten, A., 1983, High Resolution Schemes for Hyperbolic Conservation Laws,

J. Comp. Phys. 49: 357–93.

Kutler, P. (ed), 1982, Numerical Boundary Condition Procedures, NASA Conference Pub-

lication 2201, NASA Ames Research Center, Moffett Field, CA.

Lafon, F., and S. Osher, 1992, Essentially Nonoscillatory Postprocessing Filtering Methods,

NASA Contractor Report 189610, ICASE–92–05.

Landsberg, A.M., and J.P. Boris, 1992, An Efficient Method for Solving Flows Around

Complex Bodies, U.S. Naval Research Laboratory Memorandum Report, to appear.

Lax, P.D., and B. Wendroff, 1964, Difference Schemes for Hyperbolic Equations with High

Order of Accuracy, Comm. Pure Appl. Math. 17: 381–398.

Löhner, R., K. Morgan, J. Peraire, and M. Vahdati, 1987, Finite Element Flux-Corrected

Transport (FEM–FCT) for the Euler and Navier-Stokes Equations, Int. J. Num. Meth.

Fluids 7: 1093–1109.

Leonard, B.P., and H.S. Niknafs, 1990, A Cost Effective Strategy for Nonoscillatory Con-

vection Without Clipping, NASA Technocal Memorandum 102538, ICOMP–90–09.

Nessyahu, H., and E. Tadmor, 1990, Non-Oscillatory Central Differencing for Hyperbolic

Conservation Laws, J. Comp. Phys. 87: 408–463.

Odstrcil, D., 1990, A New Optimized FCT Algorithm for Shock Wave Problems, J. Comp.

Phys. 91: 71–93.

75

Oran, E.S., and J.P. Boris, 1987, Numerical Simulation of Reactive Flow, Chapter 8,

Elsevier, New York.

Oran, E.S. and J.P. Boris, 1991, Compressible Flow Simulations on a Massively Parallel

Computer, International Journal of Modern Physics C, 430–436.

Patnaik, G., R.H. Guirguis, J.P. Boris, and E.S. Oran, 1987, A Barely Implicit Correction

for Flux-Corrected Transport, J. Comp. Phys. 71: 1–20.

Poinsot, T.J. and Lele, S.K., 1992, Boundary Conditions for Direct Simulations of Com-

pressible Viscous Flows, J. Comp. Phys. 101: 104–129.

Rood, R.B., 1987, Numerical Advection Algorithms and their Role in Atmospheric Trans-

port and Chemistry Models, Rev. Geophys. 25: 71–100.

Thompson, K.W., 1987, Time Dependent Boundary Conditions for Hyperbolic Systems,

J. Comp. Phys. 68: 1–24.

Thompson, K.W., 1990, Time Dependent Boundary Conditions for Hyperbolic Systems,

II, J. Comp. Phys. 89: 439–461.

Turkel, E., 1980, Numerical Methods for Large-Scale Time-Dependent Partial Differential

Equations, in W. Kollmann, ed., Computational Fluid Dynamics, Volume 2, Hemi-

sphere, Washington DC, 127–262..

van Leer, B., 1973, Towards the Ultimate Conservative Difference Scheme. I. The Quest

of Monotonicity, in H. Cabannes and R. Temam, eds., Lecture Notes in Physics 18,

Springer-Verlag, Berlin, 163–168.

van Leer, B., 1979, Towards the Ultimate Conservative Difference Scheme. V. A Second

Order Sequel to Godunov’s Method, J. Comp. Phys. 32: 101–136, 1979.

Woodward, P., and P. Colella, 1984, The Numerical Simulation of Two-Dimensional Fluid

Flow with Strong Shocks, J. Comp. Phys. 54: 115–173.

Zalesak, S.T., 1979, Fully Multidimensional Flux-Corrected Transport Algorithms for Flu-

ids, J. Comp. Phys. 31: 335–362.

Zalesak, S.T., 1981, Very High Order and pseudospectral Flux-Corrected Transport (FCT)

Algorithms for Conservations Laws, in R. Vichnevetsky and R.S. Stepleman, Advances

in Computer Methods for Partial Differential Equations, Vol. IV, 126–134.

76

Appendix A

APPENDIX A. LISTING OF LCPFCT LIBRARY SUBROUTINES

The thirteen subroutines of the LCPFCT library are listed sequentially in the following

pages. The four main subroutines, LCPFCT, MAKEGRID, VELOCITY, and SOURCES

are listed first followed by the remaining routines in alphabetic order. The following index is

provided to direct the reader to the page where the listing of each of the routines, including

the block data routine FCTBLK, begins.

LCPFCT . A2

MAKEGRID . A5

VELOCITY . A7

SOURCES . A8

CNVFCT . A10

CONSERVE . A13

COPYGRID . A14

FCTBLK . A15

NEW GRID . A15

RESIDIFF . A17

SET GRID . A18

ZERODIFF . A19

ZEROFLUX . A20

A-1

Appendix A

C===

Subroutine LCPFCT (RHOO, RHON, I1, IN,
& SRHO1, VRHO1, SRHON, VRHON, PBC)

C---
c
c Originated: J.P. Boris Code 4400, NRL Feb 1987
c Modified: Laboratory for Computational Physics & Fluid Dynamics
c Contact: J.P. Boris, J.H. Gardner, A.M. Landsberg, or E.S. Oran
c
c Description: This routine solves generalized continuity equations
c of the form dRHO/dt = -div (RHO*V) + SOURCES in the user’s choice
c of Cartesian, cylindrical, or spherical coordinate systems. A
c facility is included to allow definition of other coordinates.
c The grid can be Eulerian, sliding rezone, or Lagrangian and can
c be arbitrarily spaced. The algorithm is a low-phase-error FCT
c algorithm, vectorized and optimized for a combination of speed and
c flexibility. A complete description appears in the NRL Memorandum
c Report (1992), "LCPFCT - A Flux-Corrected Transport Algorithm For
c Solving Generalized Continuity Equations".
c
c Arguments:
c RHOO Real Array grid point densities at start of step I
c RHON Real Array grid point densities at end of step O
c I1 Integer first grid point of integration I
c IN Integer last grid point of intergration I
c SRHO1 Real Array boundary guard cell factor at cell I1+1 I
c VRHO1 Real Array boundary value added to guard cell I1-1 I
c SRHON Real Array boundary guard cell factor at cell IN+1 I
c VRHON Real Array boundary value added to guard cell IN+1 I
c PBC Logical periodic boundaries if PBC = .true. I
c
c In this routine the last interface at RADHN(INP) is the outer
c boundary of the last cell indexed IN. The first interface at
c RADHN(I1) is the outer boundary of the integration domain before
c the first cell indexed I1.
c
c Language and Limitations: LCPFCT is a package of FORTRAN 77 sub-
c routines written in single precision (64 bits CRAY). The parameter
c NPT is used to establish the internal FCT array dimensions at the
c maximum size expected. Thus NPT = 202 means that continuity equa-
c tions for systems up to 200 cells long in one direction can be
c integrated. Underflows can occur when the function being trans-
c ported has a region of zeroes. The calculations misconserve by
c one or two bits per cycle. Relative phase and amplitude errors
c (for smooth functions) are typically a few percent for character-
c istic lengths of 1 - 2 cells (wavelengths of order 10 cells). The
c jump conditions for shocks are generally accurate to better than 1
c percent. Common blocks are used to transmit all data between the
c subroutines in the LCPFCT package.
c
c Auxiliary Subroutines: CNVFCT, CONSERVE, COPYGRID, MAKEGRID,
c NEW_GRID, RESIDIFF, SET_GRID, SOURCES, VELOCITY, ZERODIFF, and
c ZEROFLUX. The detailed documentation report provided (or the
c listing below) explains the definitions and use of the arguments
c to these other subroutines making up the LCPFCT package. These
c routines are not called from LCPFCT itself but are controlled by
c calls from the user. Subroutines MAKEGRID, VELOCITY and SOURCES
c in this package must first be called to set the grid geometry,

A-2

Appendix A

c velocity-dependent flux and diffusion coefficients, and external
c source arrays used by LCPFCT. The other subroutines may be called
c to perform other functions such as to modify boundary conditions,
c to perform special grid operations, or compute conservation sums.
c
C---

Implicit NONE
Integer NPT, I1, IN, I1P, INP, I
Real BIGNUM, SRHO1, VRHO1, SRHON, VRHON, RHO1M, RHONP
Real RHOT1M, RHOTNP, RHOTD1M, RHOTDNP
Logical PBC
Parameter (NPT = 202)
Parameter (BIGNUM = 1.0E38)

c BIGNUM = Machine Dependent Largest Number - Set By The User!!!!

Real RHOO(NPT), RHON(NPT)

c /FCT_SCRH/ Holds scratch arrays for use by LCPFCT and CNVFCT
Real SCRH(NPT), SCR1(NPT), DIFF(NPT)
Real FLXH(NPT), FABS(NPT), FSGN(NPT)
Real TERM(NPT), TERP(NPT), LNRHOT(NPT)
Real LORHOT(NPT), RHOT(NPT), RHOTD(NPT)
Common /FCT_SCRH/ SCRH, SCR1, DIFF, FLXH, FABS, FSGN,

& TERM, TERP, LNRHOT, LORHOT, RHOT, RHOTD

c /FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT), AH (NPT)
Real RLN(NPT), LH (NPT), RLH(NPT)
Real ROH(NPT), RNH(NPT), ADUGTH(NPT)
Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

c /FCT_VELO/ Holds velocity-dependent flux coefficients
Real HADUDTH(NPT), NULH(NPT), MULH(NPT)
Real EPSH(NPT), VDTODR(NPT)
Common /FCT_VELO/ HADUDTH, NULH, MULH, EPSH, VDTODR

c /FCT_MISC/ Holds the source array and diffusion coefficient
Real SOURCE(NPT), DIFF1
Common /FCT_MISC/ SOURCE, DIFF1

C---
I1P = I1 + 1
INP = IN + 1

c Calculate the convective and diffusive fluxes . . .
C---

If (PBC) Then
RHO1M = RHOO(IN)
RHONP = RHOO(I1)

Else
RHO1M = SRHO1*RHOO(I1) + VRHO1
RHONP = SRHON*RHOO(IN) + VRHON

End If

DIFF(I1) = NULH(I1) * (RHOO(I1) - RHO1M)
FLXH(I1) = HADUDTH(I1) * (RHOO(I1) + RHO1M)

Do 1 I = I1P, IN
FLXH(I) = HADUDTH(I) * (RHOO(I) + RHOO(I-1))

1 DIFF(I) = NULH(I) * (RHOO(I) - RHOO(I-1))

A-3

Appendix A

DIFF(INP) = NULH(INP) * (RHONP - RHOO(IN))
FLXH(INP) = HADUDTH(INP) * (RHONP + RHOO(IN))

c Calculate LORHOT, the transported mass elements, and LNRHOT, the
c transported & diffused mass elements . . .
C---

Do 2 I = I1, IN
LORHOT(I) = LO(I)*RHOO(I) + SOURCE(I) + (FLXH(I)-FLXH(I+1))
LNRHOT(I) = LORHOT(I) + (DIFF(I+1) - DIFF(I))
RHOT(I) = LORHOT(I)*RLN(I)

2 RHOTD(I) = LNRHOT(I)*RLN(I)

c Evaluate the boundary conditions for RHOT and RHOTD . . .
C---

If (PBC) Then
RHOT1M = RHOT(IN)
RHOTNP = RHOT(I1)
RHOTD1M = RHOTD(IN)
RHOTDNP = RHOTD(I1)

Else
RHOT1M = SRHO1*RHOT(I1) + VRHO1
RHOTNP = SRHON*RHOT(IN) + VRHON
RHOTD1M = SRHO1*RHOTD(I1) + VRHO1
RHOTDNP = SRHON*RHOTD(IN) + VRHON

End If

c Calculate the transported antiduffusive fluxes and transported
c and diffused density differences . . .
C---

FLXH(I1) = MULH(I1) * (RHOT(I1) - RHOT1M)
DIFF(I1) = RHOTD(I1) - RHOTD1M
FABS(I1) = ABS (FLXH(I1))
FSGN(I1) = SIGN (DIFF1, DIFF(I1))

Do 3 I = I1P, IN
FLXH(I) = MULH(I) * (RHOT(I) - RHOT(I-1))

3 DIFF(I) = RHOTD(I) - RHOTD(I-1)

FLXH(INP) = MULH(INP) * (RHOTNP - RHOT(IN))
DIFF(INP) = RHOTDNP - RHOTD(IN)

c Calculate the magnitude & sign of the antidiffusive flux followed
c by the flux-limiting changes on the right and left . . .
C---

Do 4 I = I1, IN
FABS(I+1) = ABS (FLXH(I+1))
FSGN(I+1) = SIGN (DIFF1, DIFF(I+1))
TERM(I+1) = FSGN(I+1)*LN(I)*DIFF(I)

4 TERP(I) = FSGN(I)*LN(I)*DIFF(I+1)

If (PBC) Then
TERP(INP) = TERP(I1)
TERM(I1) = TERM(INP)

Else
TERP(INP) = BIGNUM
TERM(I1) = BIGNUM

End If

c Correct the transported fluxes completely and then calculate the
c new Flux-Corrected Transport densities . . .

A-4

Appendix A

C---
FLXH(I1) = FSGN(I1) * AMAX1 (0.0,

& AMIN1 (TERM(I1), FABS(I1), TERP(I1)))

Do 5 I = I1, IN
FLXH(I+1) = FSGN(I+1) * AMAX1 (0.0,

& AMIN1 (TERM(I+1), FABS(I+1), TERP(I+1)))
RHON(I) = RLN(I) * (LNRHOT(I) + (FLXH(I) - FLXH(I+1)))

5 SOURCE(I) = 0.0

Return
End

C===

Subroutine MAKEGRID (RADHO, RADHN, I1, INP, ALPHA)

C---
c
c Description: This Subroutine initializes geometry variables and
c coefficients. It should be called first to initialize the grid.
c The grid must be defined for all of the grid interfaces from I1 to
c INP. Subsequent calls to VELOCITY and LCPFCT can work on only
c portions of the grid, however, to perform restricted integrations
c on separate line segments.
c
c Arguments:
c RADHO Real Array(INP) old cell interface positions I
c RADHN Real Array(INP) new cell interface positions I
c I1 Integer first cell interface I
c INP Integer last cell interface I
c ALPHA Integer = 1 for cartesian geometry I
c = 2 for cylindrical geometry I
c = 3 for spherical geometry I
c = 4 general geometry (user supplied) I
c
C---

Implicit NONE
Integer NPT, I1, I1P, I, IN, INP, ALPHA
Parameter (NPT = 202)

Real RADHO(INP), RADHN(INP), PI, FTPI

c /FCT_SCRH/ Holds scratch arrays for use by LCPFCT and CNVFCT
Real SCRH(NPT), SCR1(NPT), DIFF(NPT)
Real FLXH(NPT), FABS(NPT), FSGN(NPT)
Real TERM(NPT), TERP(NPT), LNRHOT(NPT)
Real LORHOT(NPT), RHOT(NPT), RHOTD(NPT)
Common /FCT_SCRH/ SCRH, SCR1, DIFF, FLXH, FABS, FSGN,

& TERM, TERP, LNRHOT, LORHOT, RHOT, RHOTD

c /FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT), AH (NPT)
Real RLN(NPT), LH (NPT), RLH(NPT)
Real ROH(NPT), RNH(NPT), ADUGTH(NPT)
Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

DATA PI, FTPI /3.1415927, 4.1887902/

C---

A-5

Appendix A

I1P = I1 + 1
IN = INP - 1

c Store the old and new grid interface locations from input and then
c update the new and average interface and grid coefficients . . .
C---

Do 1 I = I1, INP
ROH(I) = RADHO(I)

1 RNH(I) = RADHN(I)

c Select the choice of coordinate systems . . .
C---

Go To (100, 200, 300, 400), ALPHA

c Cartesian coordinates . . .
C---
100 AH(INP) = 1.0

Do 101 I = I1, IN
AH(I) = 1.0
LO(I) = ROH(I+1) - ROH(I)

101 LN(I) = RNH(I+1) - RNH(I)
Go To 500

c Cylindrical Coordinates: RADIAL . . .
C---
200 DIFF(I1) = RNH(I1)*RNH(I1)

SCRH(I1) = ROH(I1)*ROH(I1)
AH(INP) = PI*(ROH(INP) + RNH(INP))
DO 201 I = I1, IN

AH(I) = PI*(ROH(I) + RNH(I))
SCRH(I+1) = ROH(I+1)*ROH(I+1)
LO(I) = PI*(SCRH(I+1) - SCRH(I))
DIFF(I+1) = RNH(I+1)*RNH(I+1)

201 LN(I) = PI*(DIFF(I+1) - DIFF(I))
Go To 500

c Spherical Coordinates: RADIAL . . .
C---
300 SCR1(I1) = ROH(I1)*ROH(I1)*ROH(I1)

DIFF(I1) = RNH(I1)*RNH(I1)*RNH(I1)
SCRH(INP) = (ROH(INP) + RNH(INP))*ROH(INP)
AH(INP) = FTPI*(SCRH(INP) + RNH(INP)*RNH(INP))
DO 301 I = I1, IN

SCR1(I+1) = ROH(I+1)*ROH(I+1)*ROH(I+1)
DIFF(I+1) = RNH(I+1)*RNH(I+1)*RNH(I+1)
SCRH(I) = (ROH(I) + RNH(I))*ROH(I)
AH(I) = FTPI*(SCRH(I) + RNH(I)*RNH(I))
LO(I) = FTPI*(SCR1(I+1) - SCR1(I))

301 LN(I) = FTPI*(DIFF(I+1) - DIFF(I))
Go To 500

c Special Coordinates: Areas and Volumes are User Supplied . . .
C---
400 Continue

c Additional system independent geometric variables . . .
C---
500 Do 501 I = I1, IN
501 RLN(I) = 1.0/LN(I)

LH(I1) = LN(I1)
RLH(I1) = RLN(I1)

A-6

Appendix A

Do 502 I = I1P, IN
LH(I) = 0.5*(LN(I) + LN(I-1))

502 RLH(I) = 0.5*(RLN(I) + RLN(I-1))
LH(INP) = LN(IN)
RLH(INP) = RLN(IN)
Do 503 I = I1, INP

503 ADUGTH(I) = AH(I)*(RNH(I) - ROH(I))

Return
End

C===

Subroutine VELOCITY (UH, I1, INP, DT)

C---
c
c Description: This subroutine calculates all velocity-dependent
c coefficients for the LCPFCT and CNVFCT routines. This routine
c must be called before either LCPFCT or CNVFCT is called. MAKEGRID
c must be called earlier to set grid and geometry data used here.
c
c Arguments:
c UH Real Array(NPT) flow velocity at cell interfaces I
c I1 Integer first cell interface of integration I
c INP Integer last cell interface = N + 1 I
c DT Real stepsize for the time integration I
c
C---

Implicit NONE
Integer NPT, I1, I1P, I, IN, INP
Parameter (NPT = 202)

Real UH(INP), DT, RDT, DTH, DT2, DT4, ONE3RD, ONE6TH

c /FCT_SCRH/ Holds scratch arrays for use by LCPFCT and CNVFCT
Real SCRH(NPT), SCR1(NPT), DIFF(NPT)
Real FLXH(NPT), FABS(NPT), FSGN(NPT)
Real TERM(NPT), TERP(NPT), LNRHOT(NPT)
Real LORHOT(NPT), RHOT(NPT), RHOTD(NPT)
Common /FCT_SCRH/ SCRH, SCR1, DIFF, FLXH, FABS, FSGN,

& TERM, TERP, LNRHOT, LORHOT, RHOT, RHOTD

c /FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT), AH (NPT)
Real RLN(NPT), LH (NPT), RLH(NPT)
Real ROH(NPT), RNH(NPT), ADUGTH(NPT)
Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

c /FCT_VELO/ Holds velocity-dependent flux coefficients
Real HADUDTH(NPT), NULH(NPT), MULH(NPT)
Real EPSH(NPT), VDTODR(NPT)
Common /FCT_VELO/ HADUDTH, NULH, MULH, EPSH, VDTODR

C---
I1P = I1 + 1
IN = INP - 1

c Calculate 0.5*Interface Area * Velocity Difference * DT (HADUDTH).
c Next calculate the interface epsilon (EPSH = V*DT/DX). Then find

A-7

Appendix A

c the diffusion (NULH) and antidiffusion (MULH) coefficients. The
c variation with epsilon gives fourth-order accurate phases when the
c grid is uniform, the velocity constant, and SCRH is set to zero.
c With SCRH nonzero (as below) slightly better results are obtained
c in some of the tests. Optimal performance, of course, depends on
c on the application.
C---

RDT = 1.0/DT
DTH = 0.5*DT
ONE6TH = 1.0/6.0
ONE3RD = 1.0/3.0
Do 1 I = I1, INP

HADUDTH(I) = DT*AH(I)*UH(I) - ADUGTH(I)
EPSH(I) = HADUDTH(I)*RLH(I)
SCRH(I) = AMIN1 (ONE6TH, ABS(EPSH(I)))
SCRH(I) = ONE3RD*SCRH(I)**2
HADUDTH(I) = 0.5*HADUDTH(I)
NULH(I) = ONE6TH + ONE3RD*(EPSH(I) + SCRH(I))*

& (EPSH(I) - SCRH(I))
MULH(I) = 0.25 - 0.5*NULH(I)
NULH(I) = LH(I)*(NULH(I) + SCRH(I))
MULH(I) = LH(I)*(MULH(I) + SCRH(I))

1 DIFF(I) = UH(I) - RDT*(RNH(I) - ROH(I))

c Now calculate VDTODR for CNVFCT . . .
C---

DT2 = 2.0*DT
DT4 = 4.0*DT
VDTODR(I1) = DT2*DIFF(I1)/(RNH(I1P)-RNH(I1) +

& ROH(I1P)-ROH(I1))

Do 2 I = I1P, IN
2 VDTODR(I) = DT4*DIFF(I)/(RNH(I+1)-RNH(I-1) +
& ROH(I+1)-ROH(I-1))

VDTODR(INP) = DT2*DIFF(INP)/(RNH(INP)-RNH(IN) +
& ROH(INP)-ROH(IN))

Return
End

C===

Subroutine SOURCES (I1, IN, DT, MODE, C, D, D1, DN)

C---
c
c Description: This Subroutine accumulates different source terms.
c
c Arguments:
c I1 Integer first cell to be integrated I
c IN Integer last cell to be integrated I
c DT Real stepsize for the time integration I
c MODE Integer = 1 computes + DIV (D) I
c = 2 computes + C*GRAD (D) I
c = 3 adds + D to the sources I
c = 4 + DIV (D) from interface data I
c = 5 + C*GRAD (D) from interface data I
c = 6 + C for list of scalar indices I
c C Real Array(NPT) Array of source variables I
c D Real Array(NPT) Array of source variables I

A-8

Appendix A

c D1 Real first boundary value of D I
c DN Real last boundary value of D I
c
C---

Implicit NONE
Integer NPT, NINDMAX, MODE, IS, I, I1, IN, I1P, INP
Parameter (NPT = 202, NINDMAX = 150)

Real C(NPT), D(NPT), DT, DTH, DTQ, D1, DN

c /FCT_NDEX/ Holds a scalar list of special cell information . . .
Real SCALARS(NINDMAX)
Integer INDEX(NINDMAX), NIND
Common /FCT_NDEX/ NIND, INDEX, SCALARS

c /FCT_SCRH/ Holds scratch arrays for use by LCPFCT and CNVFCT
Real SCRH(NPT), SCR1(NPT), DIFF(NPT)
Real FLXH(NPT), FABS(NPT), FSGN(NPT)
Real TERM(NPT), TERP(NPT), LNRHOT(NPT)
Real LORHOT(NPT), RHOT(NPT), RHOTD(NPT)
Common /FCT_SCRH/ SCRH, SCR1, DIFF, FLXH, FABS, FSGN,

& TERM, TERP, LNRHOT, LORHOT, RHOT, RHOTD

c /FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT), AH (NPT)
Real RLN(NPT), LH (NPT), RLH(NPT)
Real ROH(NPT), RNH(NPT), ADUGTH(NPT)
Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

c /FCT_MISC/ Holds the source array and diffusion coefficient
Real SOURCE(NPT), DIFF1
Common /FCT_MISC/ SOURCE, DIFF1

C---
I1P = I1 + 1
INP = IN + 1
DTH = 0.5*DT
DTQ = 0.25*DT
Go To (101, 202, 303, 404, 505, 606), MODE

c + DIV(D) is computed conservatively and added to SOURCE . . .
C---
101 SCRH(I1) = DT*AH(I1)*D1

SCRH(INP) = DT*AH(INP)*DN
Do 1 I = IN, I1P, -1

SCRH(I) = DTH*AH(I)*(D(I) + D(I-1))
1 SOURCE(I) = SOURCE(I) + (SCRH(I+1) - SCRH(I))

SOURCE(I1) = SOURCE(I1) + (SCRH(I1P) - SCRH(I1))
Return

c + C*GRAD(D) is computed efficiently and added to the SOURCE . . .
C---
202 SCRH(I1) = DTH*D1

SCRH(INP) = DTH*DN
Do 2 I = IN, I1P, -1

SCRH(I) = DTQ*(D(I)+D(I-1))
DIFF(I) = SCRH(I+1) - SCRH(I)

2 SOURCE(I) = SOURCE(I)
& + C(I)*(AH(I+1)+AH(I))*DIFF(I)

SOURCE(I1) = SOURCE(I1) + C(I1)*(AH(I1P)+AH(I1))*

A-9

Appendix A

& (SCRH(I1P)-SCRH(I1))
Return

c + D is added to SOURCE in an explicit formulation . . .
C---
303 Do 3 I = I1, IN
3 SOURCE(I) = SOURCE(I) + DT*LO(I)*D(I)
Return

c + DIV(D) is computed conservatively from interface data . . .
C---
404 SCRH(INP) = DT*AH(INP)*DN

SCRH(I1) = DT*AH(I1)*D1
Do 4 I = IN, I1P, -1

SCRH(I) = DT*AH(I)*D(I)
4 SOURCE(I) = SOURCE(I)+SCRH(I+1)-SCRH(I)

SOURCE(I1) = SOURCE(I1) + SCRH(I1P) - SCRH(I1)
Return

c + C*GRAD(D) is computed using interface data . . .
C---
505 SCRH(I1) = DTH*D1

SCRH(INP) = DTH*DN
Do 5 I = IN, I1P, -1

SCRH(I) = DTH*D(I)
DIFF(I) = SCRH(I+1) - SCRH(I)

5 SOURCE(I) = SOURCE(I)
& + C(I)*(AH(I+1)+AH(I))*DIFF(I)

SOURCE(I1) = SOURCE(I1) + C(I1)*(AH(I1P)+AH(I1))*
& (SCRH(I1P)-SCRH(I1))
Return

c + C for source terms only at a list of indices . . .
C---
606 Do 6 IS = 1, NIND

I = INDEX(IS)
6 SOURCE(I) = SOURCE(I) + SCALARS(IS)

Return
End

C===

Subroutine CNVFCT (RHOO, RHON, I1, IN,
& SRHO1, VRHO1, SRHON, VRHON, PBC)

C---
c
c Originated: J.P. Boris Code 4400, NRL Feb 1987
c Modified: Laboratory for Computational Physics & Fluid Dynamics
c Contact: J.P. Boris, J.H. Gardner, A.M. Landsberg, or E.S. Oran
c
c Description: This routine solves an advective continuity equation
c of the form dRHO/dt = -V*grad(RHO) + SOURCES in the user’s choice
c of Cartesian, cylindrical, or spherical coordinate systems. A
c facility is included to allow definition of other coordinates.
c The grid can be Eulerian, sliding rezone, or Lagrangian and can
c be arbitrarily spaced. The algorithm is a low-phase-error FCT
c algorithm, vectorized and optimized for a combination of speed and
c flexibility. A complete description appears in the NRL Memorandum
c Report (1992), "LCPFCT - A Flux-Corrected Transport Algorithm For

A-10

Appendix A

c Solving Generalized Continuity Equations".
c
c Arguments:
c RHOO Real Array grid point densities at start of step I
c RHON Real Array grid point densities at end of step O
c I1 Integer first grid point of integration I
c IN Integer last grid point of intergration I
c SRHO1 Real Array boundary guard cell factor at cell I1+1 I
c VRHO1 Real Array boundary value added to guard cell I1-1 I
c SRHON Real Array boundary guard cell factor at cell IN+1 I
c VRHON Real Array boundary value added to guard cell IN+1 I
c PBC Logical periodic boundaries if PBC = .true. I
c
c In this routine the last interface at RADHN(INP) is the outer
c boundary of the last cell indexed IN. The first interface at
c RADHN(I1) is the outer boundary of the integration domain before
c the first cell indexed I1. The description of CNVFCT and the
c roles played by the auxiliary library routines is the same for
c LCPFCT given above.
c
C---

Implicit NONE
Integer NPT, I1, IN, I1P, INP, I
Real BIGNUM, SRHO1, VRHO1, SRHON, VRHON, RHO1M, RHONP
Real RHOT1M, RHOTNP, RHOTD1M, RHOTDNP
Logical PBC
Parameter (NPT = 202)
Parameter (BIGNUM = 1.0E38)

c BIGNUM = Machine Dependent Largest Number - Set By The User!!!!

Real RHOO(NPT), RHON(NPT)

c /FCT_SCRH/ Holds scratch arrays for use by LCPFCT and CNVFCT
Real SCRH(NPT), SCR1(NPT), DIFF(NPT)
Real FLXH(NPT), FABS(NPT), FSGN(NPT)
Real TERM(NPT), TERP(NPT), LNRHOT(NPT)
Real LORHOT(NPT), RHOT(NPT), RHOTD(NPT)
Common /FCT_SCRH/ SCRH, SCR1, DIFF, FLXH, FABS, FSGN,

& TERM, TERP, LNRHOT, LORHOT, RHOT, RHOTD

c /FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT), AH (NPT)
Real RLN(NPT), LH (NPT), RLH(NPT)
Real ROH(NPT), RNH(NPT), ADUGTH(NPT)
Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

c /FCT_VELO/ Holds velocity-dependent flux coefficients
Real HADUDTH(NPT), NULH(NPT), MULH(NPT)
Real EPSH(NPT), VDTODR(NPT)
Common /FCT_VELO/ HADUDTH, NULH, MULH, EPSH, VDTODR

c /FCT_MISC/ Holds the source array and diffusion coefficient
Real SOURCE(NPT), DIFF1
Common /FCT_MISC/ SOURCE, DIFF1

C---
I1P = I1 + 1
INP = IN + 1

c Calculate the convective and diffusive fluxes . . .

A-11

Appendix A

C---
If (PBC) Then

RHO1M = RHOO(IN)
RHONP = RHOO(I1)

Else
RHO1M = SRHO1*RHOO(I1) + VRHO1
RHONP = SRHON*RHOO(IN) + VRHON

End If

DIFF(I1) = NULH(I1) * (RHOO(I1) - RHO1M)
FLXH(I1) = VDTODR(I1) * (RHOO(I1) - RHO1M)

Do 1 I = I1P, IN
DIFF(I) = (RHOO(I) - RHOO(I-1))
FLXH(I) = VDTODR(I) * DIFF(I)

1 DIFF(I) = NULH(I) * DIFF(I)

DIFF(INP) = NULH(INP) * (RHONP - RHOO(IN))
FLXH(INP) = VDTODR(INP) * (RHONP - RHOO(IN))

c Calculate LORHOT, the transported mass elements, and LNRHOT, the
c transported & diffused mass elements . . .
C---

Do 2 I = I1, IN
LORHOT(I) = LN(I) * (RHOO(I) - 0.5*(FLXH(I+1) + FLXH(I)))

& + SOURCE(I)
LNRHOT(I) = LORHOT(I) + (DIFF(I+1) - DIFF(I))
RHOT(I) = LORHOT(I)*RLN(I)

2 RHOTD(I) = LNRHOT(I)*RLN(I)

c Evaluate the boundary conditions for RHOT and RHOTD . . .
C---

If (PBC) Then
RHOT1M = RHOT(IN)
RHOTNP = RHOT(I1)
RHOTD1M = RHOTD(IN)
RHOTDNP = RHOTD(I1)

Else
RHOT1M = SRHO1*RHOT(I1) + VRHO1
RHOTNP = SRHON*RHOT(IN) + VRHON
RHOTD1M = SRHO1*RHOTD(I1) + VRHO1
RHOTDNP = SRHON*RHOTD(IN) + VRHON

End If

c Calculate the transported antiduffusive fluxes and transported
c and diffused density differences . . .
C---

FLXH(I1) = MULH(I1) * (RHOT(I1) - RHOT1M)
DIFF(I1) = RHOTD(I1) - RHOTD1M
FABS(I1) = ABS (FLXH(I1))
FSGN(I1) = SIGN (DIFF1, DIFF(I1))

Do 3 I = I1P, IN
FLXH(I) = MULH(I) * (RHOT(I) - RHOT(I-1))

3 DIFF(I) = RHOTD(I) - RHOTD(I-1)

FLXH(INP) = MULH(INP) * (RHOTNP - RHOT(IN))
DIFF(INP) = RHOTDNP - RHOTD(IN)

c Calculate the magnitude & sign of the antidiffusive flux followed
c by the flux-limiting changes on the right and left . . .

A-12

Appendix A

C---
Do 4 I = I1, IN

FABS(I+1) = ABS (FLXH(I+1))
FSGN(I+1) = SIGN (DIFF1, DIFF(I+1))
TERM(I+1) = FSGN(I+1)*LN(I)*DIFF(I)

4 TERP(I) = FSGN(I)*LN(I)*DIFF(I+1)

If (PBC) Then
TERP(INP) = TERP(I1)
TERM(I1) = TERM(INP)

Else
TERP(INP) = BIGNUM
TERM(I1) = BIGNUM

End If

c Correct the transported fluxes completely and then calculate the
c new Flux-Corrected Transport densities . . .
C---

FLXH(I1) = FSGN(I1) * AMAX1 (0.0,
& AMIN1 (TERM(I1), FABS(I1), TERP(I1)))

Do 5 I = I1, IN
FLXH(I+1) = FSGN(I+1) * AMAX1 (0.0,

& AMIN1 (TERM(I+1), FABS(I+1), TERP(I+1)))
RHON(I) = RLN(I) * (LNRHOT(I) + (FLXH(I) - FLXH(I+1)))

5 SOURCE(I) = 0.0

Return
End

C===

Subroutine CONSERVE (RHO, I1, IN, CSUM)

C---
c
c Description: This routine computes the ostensibly conserved sum.
c Beware your boundary conditions and note that only one continuity
c equation is summed for each call to this subroutine.
c
c Arguments:
c RHO Real Array(NPT) cell values for physical variable ’RHO’ I
c I1 Integer first cell to be integrated I
c IN Integer last cell to be integrated I
c CSUM Real value of the conservation sum of rho O
c
C---

Implicit NONE
Integer NPT, I, I1, IN
Parameter (NPT = 202)
Real CSUM, RHO(NPT)

c /FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT), AH (NPT)
Real RLN(NPT), LH (NPT), RLH(NPT)
Real ROH(NPT), RNH(NPT), ADUGTH(NPT)
Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

c Compute the ostensibly conserved total mass (BEWARE B.C.) . . .
C---

A-13

Appendix A

CSUM = 0.0
Do 80 I = I1, IN

80 CSUM = CSUM + LN(I)*RHO(I)

Return
End

C===

Subroutine COPYGRID (MODE, I1, IN)

C---
c
c Description: This Subroutine makes a complete copy of the grid
c variables defined by the most recent call to MAKEGRID from cell
c I1 to IN including the boundary values at interface IN+1 when the
c argument MODE = 1. When MODE = 2, these grid variables are reset
c from common block OLD_GRID. This routine is used where the same
c grid is needed repeatedly after some of the values have been over-
c written, for example, by a grid which moves between the halfstep
c and the whole step.
c
c Argument:
c I1 Integer first cell index I
c IN Integer last cell index I
c MODE Integer = 1 grid variables copied into OLD_GRID I
c = 2 grid restored from OLD_GRID common I
c
C---

Implicit NONE
Integer NPT, I, MODE, I1, IN
Parameter (NPT = 202)

c /OLD_GRID/ Holds geometry, grid, area and volume information
Real LOP(NPT), LNP(NPT), AHP(NPT)
Real RLNP(NPT), RLHP(NPT), LHP(NPT)
Real ROHP(NPT), RNHP(NPT), ADUGTHP(NPT)
Common /OLD_GRID/ LOP, LNP, AHP, RLNP, LHP, RLHP,

& ROHP, RNHP, ADUGTHP

c /FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT), AH (NPT)
Real RLN(NPT), LH (NPT), RLH(NPT)
Real ROH(NPT), RNH(NPT), ADUGTH(NPT)
Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

C---
If (MODE .eq. 1) Then

Do 101 I = I1, IN
LOP(I) = LO(I)
LNP(I) = LN(I)

101 RLNP(I) = RLN(I)
Do 102 I = I1, IN+1

AHP(I) = AH(I)
LHP(I) = LH(I)
RLHP(I) = RLH(I)
ROHP(I) = ROH(I)
RNHP(I) = RNH(I)

102 ADUGTHP(I) = ADUGTH(I)
Else If (MODE .eq. 2) Then

A-14

Appendix A

Do 201 I = I1, IN
LO(I) = LOP(I)
LN(I) = LNP(I)

201 RLN(I) = RLNP(I)
Do 202 I = I1, IN+1

AH(I) = AHP(I)
LH(I) = LHP(I)
RLH(I) = RLHP(I)
ROH(I) = ROHP(I)
RNH(I) = RNHP(I)

202 ADUGTH(I) = ADUGTHP(I)
Else

Write (6, 1001) MODE
End If

1001 Format (’ COPYGRID Error! MODE =’, I3, ’ (not 1 or 2!)’)

Return
End

C===

Block Data FCTBLK

C---

Implicit NONE
Integer NPT
Parameter (NPT = 202)

c /FCT_MISC/ Holds the source array and diffusion coefficient
Real SOURCE(NPT), DIFF1
Common /FCT_MISC/ SOURCE, DIFF1

Data SOURCE / NPT*0.0 /, DIFF1 / 0.999 /

End

C===

Subroutine NEW_GRID (RADHN, I1, INP, ALPHA)

C---
c
c Description: This Subroutine initializes geometry variables and
c coefficients when the most recent call to MAKEGRID used the same
c set of values RADHO and only the new interface locations RADHN are
c different. NEW_GRID is computationally more efficienty than the
c complete grid procedure in MAKEGRID because several formulae do
c not need to be recomputed. The grid should generally be defined
c for the entire number of grid interfaces from 1 to INP, however
c subsets of the entire grid may be reinitialized with care.
c
c Arguments:
c RADHN Real Array(INP) new cell interface positions I
c I1 Integer first interface index I
c INP Integer last interface index I
c ALPHA Integer = 1 for cartesian geometry I
c = 2 for cylindrical geometry I
c = 3 for spherical geometry I
c = 4 general geometry (user supplied) I
c

A-15

Appendix A

C---

Implicit NONE
Integer NPT, I1, I1P, I, IN, INP, ALPHA
Parameter (NPT = 202)

Real RADHN(INP), PI, FTPI

c /FCT_SCRH/ Holds scratch arrays for use by LCPFCT and CNVFCT
Real SCRH(NPT), SCR1(NPT), DIFF(NPT)
Real FLXH(NPT), FABS(NPT), FSGN(NPT)
Real TERM(NPT), TERP(NPT), LNRHOT(NPT)
Real LORHOT(NPT), RHOT(NPT), RHOTD(NPT)
Common /FCT_SCRH/ SCRH, SCR1, DIFF, FLXH, FABS, FSGN,

& TERM, TERP, LNRHOT, LORHOT, RHOT, RHOTD

c /FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT), AH (NPT)
Real RLN(NPT), LH (NPT), RLH(NPT)
Real ROH(NPT), RNH(NPT), ADUGTH(NPT)
Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

DATA PI, FTPI /3.1415927, 4.1887902/

C---
I1P = I1 + 1
IN = INP - 1

c Store the old and new grid interface locations from input and then
c update the new and average interface and grid coefficients . . .
C---

Do 1 I = I1, INP
1 RNH(I) = RADHN(I)

c Select the choice of coordinate systems . . .
C---

Go To (100, 200, 300, 400), ALPHA

c Cartesian coordinates . . .
C---
100 AH(INP) = 1.0

Do 101 I = I1, IN
101 LN(I) = RNH(I+1) - RNH(I)

Go To 500

c Cylindrical Coordinates: RADIAL . . .
C---
200 DIFF(I1) = RNH(I1)*RNH(I1)

AH(INP) = PI*(ROH(INP) + RNH(INP))
DO 201 I = I1, IN

AH(I) = PI*(ROH(I) + RNH(I))
DIFF(I+1) = RNH(I+1)*RNH(I+1)

201 LN(I) = PI*(DIFF(I+1) - DIFF(I))
Go To 500

c Spherical Coordinates: RADIAL . . .
C---
300 DIFF(I1) = RNH(I1)*RNH(I1)*RNH(I1)

SCRH(INP) = (ROH(INP) + RNH(INP))*ROH(INP)
AH(INP) = FTPI*(SCRH(INP) + RNH(INP)*RNH(INP))
DO 301 I = I1, IN

A-16

Appendix A

DIFF(I+1) = RNH(I+1)*RNH(I+1)*RNH(I+1)
SCRH(I) = (ROH(I) + RNH(I))*ROH(I)
AH(I) = FTPI*(SCRH(I) + RNH(I)*RNH(I))

301 LN(I) = FTPI*(DIFF(I+1) - DIFF(I))
Go To 500

c Special Coordinates: Areas and Volumes are User Supplied . . .
C---
400 Continue

c Additional system independent geometric variables . . .
C---
500 Do 501 I = I1, IN
501 RLN(I) = 1.0/LN(I)

LH(I1) = LN(I1)
RLH(I1) = RLN(I1)
Do 502 I = I1P, IN

LH(I) = 0.5*(LN(I) + LN(I-1))
502 RLH(I) = 0.5*(RLN(I) + RLN(I-1))

LH(INP) = LN(IN)
RLH(INP) = RLN(IN)
Do 503 I = I1, INP

503 ADUGTH(I) = AH(I)*(RNH(I) - ROH(I))

Return
End

C===

Subroutine RESIDIFF (DIFFA)

C---
c
c Description: Allows the user to give FCT some residual numerical
c diffusion by making the anti-diffusion coefficient smaller.
c
c Arguments:
c DIFFA Real Replacement residual diffusion coefficient I
c Defaults to 0.999 but could be as high as 1.0000
c
C---

Implicit NONE
Integer NPT
Real DIFFA
Parameter (NPT = 202)

c /FCT_MISC/ Holds the source array and diffusion coefficient
Real SOURCE(NPT), DIFF1
Common /FCT_MISC/ SOURCE, DIFF1

DIFF1 = DIFFA

Return
End

C===

Subroutine SET_GRID (RADR, I1, IN)

C---

A-17

Appendix A

c
c Description: This subroutine includes the radial factor in the
c cell volume for polar coordinates. It must be preceeded by a call
c to MAKE_GRID with ALPHA = 1 to establish the angular dependence of
c the cell volumes and areas and a call to COPY_GRID to save this
c angular dependence. The angular coordinate is measured in radians
c (0 to 2 pi) in cylindrical coordinates and cos theta (1 to -1) in
c spherical coordinates. SET_GRID is called inside the loop over
c radius in a multidimensional model to append the appropriate
c radial factors when integrating in the angular direction.
c
c Arguments:
c RADR Real radius of cell center I
c I1 Integer first cell index I
c IN Integer last cell index I
c
C---

Implicit NONE
Integer NPT, I1, I1P, I, IN, INP
Real RADR
Parameter (NPT = 202)

c /OLD_GRID/ Holds geometry, grid, area and volume information
Real LOP(NPT), LNP(NPT), AHP(NPT)
Real RLNP(NPT), RLHP(NPT), LHP(NPT)
Real ROHP(NPT), RNHP(NPT), ADUGTHP(NPT)
Common /OLD_GRID/ LOP, LNP, AHP, RLNP, LHP, RLHP,

& ROHP, RNHP, ADUGTHP

c /FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT), AH (NPT)
Real RLN(NPT), LH (NPT), RLH(NPT)
Real ROH(NPT), RNH(NPT), ADUGTH(NPT)
Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

C---
I1P = I1 + 1
INP = IN + 1

C Multiply each volume element by the local radius
DO 100 I = I1, IN
LN(I) = LNP(I)*RADR

100 LO(I) = LOP(I)*RADR

c Additional system independent geometric variables . . .
C---
500 Do 501 I = I1, IN
501 RLN(I) = 1.0/LN(I)

LH(I1) = LN(I1)
RLH(I1) = RLN(I1)
Do 502 I = I1P, IN

LH(I) = 0.5*(LN(I) + LN(I-1))
502 RLH(I) = 0.5*(RLN(I) + RLN(I-1))

LH(INP) = LN(IN)
RLH(INP) = RLN(IN)

Return
End

C===

A-18

Appendix A

Subroutine ZERODIFF (IND)

C---
c
c Description: This Subroutine sets the FCT diffusion and anti-
c diffusion parameters to zero at the specified cell interface to
c inhibit unwanted diffusion across the interface. This routine is
c used for inflow and outflow boundary conditions. If argument IND
c is positive, the coefficients at that particular interface are
c reset. If IND is negative, the list of NIND indices in INDEX are
c used to reset that many interface coefficients.
c
c Argument:
c IND Integer index of interface to be reset I
c
C---

Implicit NONE
Integer NPT, NINDMAX, IND, IS, I
Parameter (NPT = 202, NINDMAX = 150)

c /FCT_NDEX/ Holds a scalar list of special cell information . . .
Real SCALARS(NINDMAX)
Integer INDEX(NINDMAX), NIND
Common /FCT_NDEX/ NIND, INDEX, SCALARS

c /FCT_VELO/ Holds velocity-dependent flux coefficients
Real HADUDTH(NPT), NULH(NPT), MULH(NPT)
Real EPSH(NPT), VDTODR(NPT)
Common /FCT_VELO/ HADUDTH, NULH, MULH, EPSH, VDTODR

C---
If (IND .gt. 0) Then

NULH(IND) = 0.0
MULH(IND) = 0.0

Else If (IND .le. 0) Then
If (NIND.lt.1 .or. NIND.gt.NINDMAX .or. IND.eq.0) Then

Write (6,*) ’ ZERODIFF Error! IND, NIND =’, IND, NIND
Stop

End If
Do IS = 1, NIND

I = INDEX(IS)
NULH(I) = 0.0
MULH(I) = 0.0

End Do
End If

Return
End

C===

Subroutine ZEROFLUX (IND)

C---
c
c Description: This Subroutine sets all the velocity dependent FCT
c parameters to zero at the specified cell interface to inhibit
c transport fluxes AND diffusion of material across the interface.
c This routine is needed in solid wall boundary conditions. If IND

A-19

Appendix A

c is positive, the coefficients at that particular interface are
c reset. If IND is negative, the list of NIND indices in INDEX are
c used to reset that many interface coefficients.
c
c Argument:
c IND Integer index of interface to be reset I
c
C---

Implicit NONE
Integer NPT, NINDMAX, IND, IS, I
Parameter (NPT = 202, NINDMAX = 150)

c /FCT_NDEX/ Holds a scalar list of special cell information . . .
Real SCALARS(NINDMAX)
Integer INDEX(NINDMAX), NIND
Common /FCT_NDEX/ NIND, INDEX, SCALARS

c /FCT_VELO/ Holds velocity-dependent flux coefficients
Real HADUDTH(NPT), NULH(NPT), MULH(NPT)
Real EPSH(NPT), VDTODR(NPT)
Common /FCT_VELO/ HADUDTH, NULH, MULH, EPSH, VDTODR

C---
If (IND .gt. 0) Then

HADUDTH(IND) = 0.0
NULH(IND) = 0.0
MULH(IND) = 0.0

Else If (IND .le. 0) Then
If (NIND.lt.1 .or. NIND.gt.NINDMAX .or. IND.eq.0) Then

Write (6,*) ’ ZEROFLUX Error! IND, NIND =’, IND, NIND
Stop

End If
Do IS = 1, NIND

I = INDEX(IS)
HADUDTH(I) = 0.0
NULH(I) = 0.0
MULH(I) = 0.0

End Do
End If

Return
End

C===

A-20

Appendix B

C===

Program CONVECT

C---
c
c CONSTANT VELOCITY CONVECTION - LCPFCT Test # 1 August 1992
c
c This program runs three periodic convection problems using LCPFCT and
c the FCT utility routines . The three profiles are the square wave, a
c semicirle, and a Gaussian peak. The velocity is constant in space and
c time and the grid is kept stationary.
c
C---

Implicit NONE

Integer NPT, NX, NXP
Parameter (NPT = 202)
Logical USE_LCP
Integer ISTEP, JSTEP, I
Integer MAXSTP, IPRINT, LOUT
Real DX, DT, VELX, TIME, XCELL
Real CSQUARE, CCIRCLE, CGAUSSP
Real ISQUARE, ICIRCLE, IGAUSSP
Real ESQUARE, ECIRCLE, EGAUSSP
Real ASQUARE(NPT), ACIRCLE(NPT), AGAUSSP(NPT)
Real SQUARE(NPT), CIRCLE(NPT), GAUSSP(NPT)
Real XINT(NPT), VINT(NPT)

1000 Format (’1’,/,’ LCPFCT Test #1 - Constant V Convection:’,
& ’ step =’, I4, ’ and TIME =’, F7.3, /, 10X,
& ’with DX =’, F6.3, ’ DT =’, F6.3, ’ and VX =’, F6.3, /)

1001 Format (’ I X(I) Square exact Circle ’,
& ’ exact Gaussian exact’)

1002 Format (I5, 7F10.5)
1003 Format (1X, /, ’ Conserved sums’, 6F10.5)
1004 Format (’ Absolute error’, F10.5, 10X, F10.5, 10X, F10.5)

c The Constant Velocity Convection control parameters are initialized.
c (change here for other cases) . . .
C---

USE_LCP = .true. ! Use the LCPFCT routine rather than CNVFCT
NX = 50 ! Number of cells in the periodic system
DX = 1.0 ! Cell size
DT = 0.2 ! Timestep for the calculation
VELX = 1.0 ! Constant X velocity, VELX*DT/DX = 0.2
MAXSTP = 501 ! Number of timesteps, two cycles of the system
LOUT = 11 ! Logical unit number of printed output device
IPRINT = 125 ! Printout frequency, fluid moves 25 cells

c The grid, velocity, and three density profiles are initialized . . .
C---

NXP = NX + 1
Do 1 I = 1, NXP

XINT(I) = FLOAT(I-1)*DX
1 VINT(I) = VELX

Call PROFILE (1, TIME, SQUARE, XINT, NX, NXP, VELX)
Call PROFILE (2, TIME, CIRCLE, XINT, NX, NXP, VELX)
Call PROFILE (3, TIME, GAUSSP, XINT, NX, NXP, VELX)

B-1

Appendix B

c Set residual diffusion, grid, and velocity factors in LCPFCT . . .
C---

Call RESIDIFF (1.0000)
Call MAKEGRID (XINT, XINT, 1, NXP, 1)
Call VELOCITY (VINT, 1, NXP, DT)

c Begin loop over timesteps . . .
C---

TIME = 0.0
Do 9999 ISTEP = 1, MAXSTP

c Results are printed as required . . .
C---

If (MOD(ISTEP-1,IPRINT) .eq. 0) Then
JSTEP = ISTEP - 1
Write (LOUT, 1000) JSTEP, TIME, DX, DT, VELX
Write (LOUT, 1001)
Call PROFILE (1, TIME, ASQUARE, XINT, NX,NXP, VELX)
Call PROFILE (2, TIME, ACIRCLE, XINT, NX,NXP, VELX)
Call PROFILE (3, TIME, AGAUSSP, XINT, NX,NXP, VELX)
ESQUARE = 0.0
ECIRCLE = 0.0
EGAUSSP = 0.0
Do 100 I = 1, NX

XCELL = XINT(I) + 0.5*DX
ESQUARE = ESQUARE + ABS(SQUARE(I) - ASQUARE(I))
ECIRCLE = ECIRCLE + ABS(CIRCLE(I) - ACIRCLE(I))
EGAUSSP = EGAUSSP + ABS(GAUSSP(I) - AGAUSSP(I))

100 Write (LOUT, 1002) I, XCELL, SQUARE(I), ASQUARE(I),
& CIRCLE(I), ACIRCLE(I), GAUSSP(I), AGAUSSP(I)

Call CONSERVE (SQUARE, 1, NX, CSQUARE)
Call CONSERVE (CIRCLE, 1, NX, CCIRCLE)
Call CONSERVE (GAUSSP, 1, NX, CGAUSSP)
If (ISTEP .eq. 1) Then

ISQUARE = CSQUARE
ICIRCLE = CCIRCLE
IGAUSSP = CGAUSSP

End If
Write (LOUT, 1003) CSQUARE, ISQUARE, CCIRCLE, ICIRCLE,

& CGAUSSP, IGAUSSP
ESQUARE = ESQUARE/CSQUARE
ECIRCLE = ECIRCLE/CCIRCLE
EGAUSSP = EGAUSSP/CGAUSSP
Write (LOUT, 1004) ESQUARE, ECIRCLE, EGAUSSP

End If

c Advance the densities one timestep using LCPFCT and CNVFCT . . .
C---

If (USE_LCP) Then
Call LCPFCT (SQUARE, SQUARE, 1, NX, 0.,0.,0.,0., .true.)
Call LCPFCT (CIRCLE, CIRCLE, 1, NX, 0.,0.,0.,0., .true.)
Call LCPFCT (GAUSSP, GAUSSP, 1, NX, 0.,0.,0.,0., .true.)

Else
Call CNVFCT (SQUARE, SQUARE, 1, NX, 0.,0.,0.,0., .true.)
Call CNVFCT (CIRCLE, CIRCLE, 1, NX, 0.,0.,0.,0., .true.)
Call CNVFCT (GAUSSP, GAUSSP, 1, NX, 0.,0.,0.,0., .true.)

End If
TIME = TIME + DT

B-2

Appendix B

9999 Continue ! End of the timestep loop.

Stop
End

C===

Subroutine PROFILE (TYPE, TIME, ARRAY, XINT, NX, NXP, VX)

C---
c
c This subroutine computes three different analytic density profiles
c depending on the value of TYPE . . .
c
c TYPE = 1 Square wave profile between 0.0 and HEIGHT
c TYPE = 2 Semicircular (elliptical) profile from 0.0 to HEIGHT
c TYPE = 3 Gaussian peak profile between 0.0 and HEIGHT
c
c The profiles are presented on a periodic domain NX cells long and a
c crude integration is done within each cell to better approximate the
c curved functions and to give an analytic approximation accounting for
c convection across a partial cell.
c
C---

Implicit NONE
Integer TYPE, NX, NXP, I, K
Real ARRAY(NX), XINT(NXP), TIME, VX, SYSLEN, ARG
Real HEIGHT, X0, WIDTH, XLEFT, XK, XRIGHT, XCENT
Data HEIGHT, X0, WIDTH / 1.0, 20.0, 10.0 /

SYSLEN = XINT(NXP)
Go To (100, 200, 300), TYPE

c Compute the profile of the square wave . . .
C---
100 XLEFT = (X0 - WIDTH) + VX*TIME
101 If (XLEFT .gt. SYSLEN) Then

XLEFT = XLEFT - SYSLEN
Go To 101

End If
102 If (XLEFT .lt. 0.0) Then

XLEFT = XLEFT + SYSLEN
Go To 102

End If
XRIGHT = XLEFT + 2.0*WIDTH

c Loop over the cells in the numerical profile to be determined . . .
Do 120 I = 1, NX

ARRAY(I) = 0.0
Do 110 K = 1, 10

XK = XINT(I) + 0.1*(FLOAT(K)-0.5)*(XINT(I+1) - XINT(I))
If (XK .gt. XLEFT .and. XK .lt. XRIGHT) Then

ARRAY(I) = ARRAY(I) + 0.1*HEIGHT
Else

XK = XK + SYSLEN
If (XK .gt. XLEFT .and. XK .lt. XRIGHT) Then

ARRAY(I) = ARRAY(I) + 0.1*HEIGHT
End If

End If
110 Continue

B-3

Appendix B

120 Continue
Return

c Compute the profile of the semicircle density hump . . .
C---
200 XLEFT = (X0 - WIDTH) + VX*TIME
201 If (XLEFT .gt. SYSLEN) Then

XLEFT = XLEFT - SYSLEN
Go To 201

End If
XRIGHT = XLEFT + 2.0*WIDTH

202 If (XLEFT .lt. 0.0) Then
XLEFT = XLEFT + SYSLEN
Go To 202

End If
XRIGHT = XLEFT + 2.0*WIDTH

c Loop over the cells in the numerical profile to be determined . . .
Do 220 I = 1, NX

ARRAY(I) = 0.0
Do 210 K = 1, 10

XK = XINT(I) + 0.1*(FLOAT(K)-0.5)*(XINT(I+1) - XINT(I))
If (XK .gt. XLEFT .and. XK .lt. XRIGHT) Then

XCENT = XLEFT + WIDTH
ARRAY(I) = ARRAY(I) + 0.1*HEIGHT*

& SQRT (1.0 - ((XK - XCENT)/WIDTH)**2)
Else

XK = XK + SYSLEN
If (XK .gt. XLEFT .and. XK .lt. XRIGHT) Then

XCENT = XLEFT + WIDTH
ARRAY(I) = ARRAY(I) + 0.1*HEIGHT*

& SQRT (1.0 - ((XK - XCENT)/WIDTH)**2)
End If

End If
210 Continue
220 Continue

Return

c Compute the profile of the Gaussian density hump . . .
C---
300 XCENT = X0 + VX*TIME
301 If (XCENT .gt. SYSLEN) Then

XCENT = XCENT - SYSLEN
Go To 301

End If
302 If (XCENT .lt. 0.0) Then

XCENT = XCENT + SYSLEN
Go To 302

End If

c Loop over the cells in the numerical profile to be determined . . .
Do 320 I = 1, NX

ARRAY(I) = 0.0
Do 310 K = 1, 10

XK = XINT(I) + 0.1*(FLOAT(K)-0.5)*(XINT(I+1) - XINT(I))
If (XK .gt. (XCENT + 0.5*SYSLEN)) XK = XK - SYSLEN
If (XK .lt. (XCENT - 0.5*SYSLEN)) XK = XK + SYSLEN
ARG = 4.0*((XK - XCENT)/WIDTH)**2
ARRAY(I) = ARRAY(I) + 0.1*HEIGHT/EXP(AMIN1(30.0,ARG))

310 Continue
320 Continue

B-4

Appendix B

Return
End

C===

B-5

Appendix B

LCPFCT Test #1 - Constant V Convection: step = 125 and TIME = 25.000
with DX = 1.000 DT = 0.200 and VX = 1.000

I X(I) Square exact Circle exact Gaussian exact
1 0.50000 0.99997 1.00000 0.87922 0.83446 0.30138 0.29959
2 1.50000 0.99996 1.00000 0.83082 0.75899 0.18598 0.18597
3 2.50000 0.99973 1.00000 0.67214 0.66001 0.10652 0.10662
4 3.50000 0.94484 1.00000 0.43972 0.52391 0.05614 0.05645
5 4.50000 0.64565 1.00000 0.21917 0.29441 0.02694 0.02761
6 5.50000 0.30888 0.00000 0.07347 0.00000 0.01162 0.01247
7 6.50000 0.09164 0.00000 0.01098 0.00000 0.00444 0.00520
8 7.50000 0.00935 0.00000 0.00000 0.00000 0.00145 0.00200
9 8.50000 0.00000 0.00000 0.00000 0.00000 0.00034 0.00071
10 9.50000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00023
11 10.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00007
12 11.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002
13 12.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001
14 13.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
15 14.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
16 15.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
17 16.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
18 17.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
19 18.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
20 19.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
21 20.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
22 21.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
23 22.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
24 23.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
25 24.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
26 25.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
27 26.50000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000
28 27.50000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00001
29 28.50000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00002
30 29.50000 0.00000 0.00000 0.00000 0.00000 0.00003 0.00007
31 30.50000 0.00003 0.00000 0.00006 0.00000 0.00005 0.00023
32 31.50000 0.00004 0.00000 0.00013 0.00000 0.00199 0.00071
33 32.50000 0.00027 0.00000 0.00026 0.00000 0.00350 0.00200
34 33.50000 0.05516 0.00000 0.00122 0.00000 0.00380 0.00520
35 34.50000 0.35436 0.00000 0.07445 0.00000 0.00488 0.01247
36 35.50000 0.69113 1.00000 0.27283 0.29439 0.03055 0.02761
37 36.50000 0.90836 1.00000 0.48122 0.52390 0.08288 0.05645
38 37.50000 0.99065 1.00000 0.64240 0.66000 0.11505 0.10661
39 38.50000 1.00000 1.00000 0.75278 0.75899 0.15126 0.18596
40 39.50000 1.00000 1.00000 0.83335 0.83445 0.25564 0.29959
41 40.50000 1.00000 1.00000 0.89806 0.89245 0.44938 0.44576
42 41.50000 1.00000 1.00000 0.94672 0.93625 0.67349 0.61258
43 42.50000 1.00000 1.00000 0.97553 0.96779 0.83938 0.77751
44 43.50000 1.00000 1.00000 0.98617 0.98826 0.90622 0.91146
45 44.50000 1.00000 1.00000 0.98710 0.99833 0.91104 0.98686
46 45.50000 1.00000 1.00000 0.98710 0.99834 0.91104 0.98686
47 46.50000 1.00000 1.00000 0.98710 0.98826 0.91064 0.91147
48 47.50000 1.00000 1.00000 0.96931 0.96779 0.82071 0.77752
49 48.50000 1.00000 1.00000 0.90825 0.93625 0.64027 0.61259
50 49.50000 1.00000 1.00000 0.88015 0.89245 0.45563 0.44577

Conserved sums 20.00002 20.00000 15.70970 15.70969 8.86228 8.86227
Absolute error 0.08197 0.04005 0.05631

LCPFCT Test #1 - Constant V Convection: step = 500 and TIME =100.000
with DX = 1.000 DT = 0.200 and VX = 1.000

B-6

Appendix B

I X(I) Square exact Circle exact Gaussian exact
1 0.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 1.50000 0.00000 0.00000 0.00000 0.00000 0.00004 0.00000
3 2.50000 0.00000 0.00000 0.00000 0.00000 0.00011 0.00001
4 3.50000 0.00000 0.00000 0.00000 0.00000 0.00014 0.00002
5 4.50000 0.00005 0.00000 0.00000 0.00000 0.00014 0.00007
6 5.50000 0.00018 0.00000 0.00001 0.00000 0.00014 0.00023
7 6.50000 0.00065 0.00000 0.00001 0.00000 0.00019 0.00071
8 7.50000 0.00289 0.00000 0.00004 0.00000 0.00543 0.00200
9 8.50000 0.13042 0.00000 0.01387 0.00000 0.01946 0.00520
10 9.50000 0.39106 0.00000 0.11621 0.00000 0.02907 0.01247
11 10.50000 0.65869 1.00000 0.27572 0.29455 0.03172 0.02762
12 11.50000 0.85634 1.00000 0.44555 0.52397 0.03329 0.05647
13 12.50000 0.96248 1.00000 0.60186 0.66005 0.03789 0.10664
14 13.50000 0.99725 1.00000 0.73672 0.75902 0.12824 0.18600
15 14.50000 1.00000 1.00000 0.84563 0.83448 0.31265 0.29964
16 15.50000 1.00000 1.00000 0.92215 0.89247 0.53205 0.44582
17 16.50000 1.00000 1.00000 0.96265 0.93626 0.71844 0.61265
18 17.50000 1.00000 1.00000 0.97388 0.96780 0.83116 0.77758
19 18.50000 1.00000 1.00000 0.97423 0.98826 0.87123 0.91151
20 19.50000 1.00000 1.00000 0.97423 0.99834 0.87412 0.98687
21 20.50000 1.00000 1.00000 0.97275 0.99833 0.87412 0.98684
22 21.50000 1.00000 1.00000 0.96347 0.98825 0.87412 0.91142
23 22.50000 1.00000 1.00000 0.95660 0.96778 0.82358 0.77746
24 23.50000 1.00000 1.00000 0.95471 0.93623 0.66934 0.61252
25 24.50000 0.99995 1.00000 0.95370 0.89243 0.48613 0.44570
26 25.50000 0.99982 1.00000 0.92051 0.83443 0.32092 0.29954
27 26.50000 0.99935 1.00000 0.80082 0.75896 0.19435 0.18593
28 27.50000 0.99712 1.00000 0.61252 0.65996 0.10805 0.10659
29 28.50000 0.86959 1.00000 0.40154 0.52384 0.05424 0.05644
30 29.50000 0.60895 1.00000 0.21699 0.29425 0.02330 0.02760
31 30.50000 0.34132 0.00000 0.08919 0.00000 0.00746 0.01247
32 31.50000 0.14367 0.00000 0.02267 0.00000 0.00117 0.00520
33 32.50000 0.03753 0.00000 0.00152 0.00000 0.00000 0.00200
34 33.50000 0.00275 0.00000 0.00000 0.00000 0.00000 0.00071
35 34.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00023
36 35.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00007
37 36.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002
38 37.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001
39 38.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
40 39.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
41 40.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
42 41.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
43 42.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
44 43.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
45 44.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
46 45.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
47 46.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
48 47.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
49 48.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
50 49.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Conserved sums 20.00005 20.00000 15.70975 15.70969 8.86231 8.86227
Absolute error 0.10505 0.06677 0.10650

B-7

Appendix C

C===

Program SHOCK

C---
c
c PROGRESSING 1D GASDYNAMIC SHOCK - LCPFCT Test # 2 August 1992
c
c This program runs a simple 1D gasdynamic shock through a uniform
c grid using LCPFCT and its utility routines. The fluid is ideal and
c inviscid with constant GAMMA0 = 1.4. The boundary conditions are
c specified external values on both ends of the system.
c
C---

Implicit NONE

Integer NPT, ALPHA, BC1, BCN, MAXSTP, IPRINT
Parameter (NPT = 202)
Integer NX, NXP, MX, ISTEP, JSTEP, I, LOUT
Real MACH, V0, DELTAX, DELTAT
Real RHOSUM, RHVSUM, PRESUM, ERGSUM
Real VNEW(NPT), PNEW(NPT), TNEW(NPT), XINT(NPT)
Real CSAMB, ERG_IN, ERGAMB, RELAX
Real TIME, DTMAX

Real RHO_IN, PRE_IN, VEL_IN, GAMMA0
Real RHOAMB, PREAMB, VELAMB, GAMMAM
Real RHON(NPT), RVXN(NPT), RVTN(NPT), ERGN(NPT)
Common / ARRAYS / RHON, RVXN, RVTN, ERGN, RELAX,

& RHO_IN, PRE_IN, VEL_IN, GAMMA0,
& RHOAMB, PREAMB, VELAMB, GAMMAM

1000 Format (’1’, /, ’ LCPFCT Test # 2 - Progressing Shock:’,
& ’ Step =’, I4, ’ NX =’, I3, ’ DT =’, F6.3, /)

1001 Format (2X, I3, 1P6E12.4)
1002 Format (’ I Density Temperature Pressure ’,

& ’ Velocity Energy Interfaces’, /)
1003 Format (’0 Conservation Sums ’, /, 5X, 1PE12.4, 12X, 3E12.4, /)

c The Progressing Shock test run control parameters are specified here.
c (change for other cases) . . .
C---

MACH = 5.0 ! Mach number of the incoming ambient flow
V0 = 3.0 ! Shock speed in the lab frame
DELTAX = 1.0 ! Cell size
DELTAT = 0.05 ! Timestep for the calculation
ALPHA = 1 ! (1 = Cartesian, 2 = Cylindrical, 3 = Spherical)
LOUT = 11 ! Logical unit number of printed output device
NX = 50 ! Number of cells in the computational domain
MX = 10 ! Number of cells initialized behind the shock
MAXSTP = 201 ! Maximum number of timesteps of length DELTAT
IPRINT = 50 ! Frequency of intermediate result printouts

c Initialize the variables in Common for use in GASDYN . . .
C---

GAMMA0 = 1.4 ! Gas constant
PREAMB = 1.0 ! Ambient (unshocked) pressure on the right
RHOAMB = 1.0 ! Density of the unshocked fluid on the right
RELAX = 0.0 ! Relaxation rate, not used when BC1, BCN = 2
GAMMAM = GAMMA0 - 1.0

C-1

Appendix C

c The Rankine-Hugoniot conditions are set for boundaries . . .
C---

CSAMB = SQRT (GAMMA0*PREAMB/RHOAMB)
VELAMB = -MACH*CSAMB
VEL_IN = VELAMB*(GAMMAM + 2.0/MACH**2)/(GAMMA0 + 1.0)
RHO_IN = RHOAMB*VELAMB/VEL_IN
PRE_IN = PREAMB - RHO_IN*VEL_IN**2 + RHOAMB*VELAMB**2
VELAMB = VELAMB + V0
VEL_IN = VEL_IN + V0
ERGAMB = PREAMB/(GAMMA0 - 1.0) + 0.5*RHOAMB*VELAMB**2
ERG_IN = PRE_IN/(GAMMA0 - 1.0) + 0.5*RHO_IN*VEL_IN**2

c Define the cell interface locations and physical variables . . .
C---

NXP = NX + 1
Do 10 I = 1, NXP

10 XINT(I) = FLOAT(I-1)*DELTAX
Do 20 I = MX+1, NX

RHON(I) = RHOAMB
RVXN(I) = RHOAMB*VELAMB
RVTN(I) = 0.0

20 ERGN(I) = ERGAMB
Do 30 I = 1, MX

RHON(I) = RHO_IN
RVXN(I) = RHO_IN*VEL_IN
RVTN(I) = 0.0

30 ERGN(I) = ERG_IN

c Begin loop over timesteps . . .
C---

BC1 = 4
BCN = 4
Call RESIDIFF (1.000)
Call MAKEGRID (XINT, XINT, 1, NXP, ALPHA)

Do 9999 ISTEP = 1, MAXSTP

c The results are printed when required . . .
C---

If (MOD(ISTEP-1, IPRINT) .eq. 0) Then

JSTEP = ISTEP - 1
Write (LOUT, 1000) JSTEP, NX, DELTAT
Do 40 I = 1, NX

VNEW(I) = RVXN(I)/RHON(I)
PNEW(I) = GAMMAM*(ERGN(I) - 0.5*RVXN(I)*VNEW(I))

40 TNEW(I) = PNEW(I)/RHON(I)
Write (LOUT, 1002)
Write (LOUT, 1001) (I, RHON(I), TNEW(I), PNEW(I),

& VNEW(I), ERGN(I), XINT(I), I = 1, NX)
Call CONSERVE (RHON, 1, NX, RHOSUM)
Call CONSERVE (PNEW, 1, NX, PRESUM)
Call CONSERVE (RVXN, 1, NX, RHVSUM)
Call CONSERVE (ERGN, 1, NX, ERGSUM)
PRESUM = PRESUM/GAMMAM
Write (LOUT, 1003) RHOSUM, PRESUM, RHVSUM, ERGSUM

End If

c The FCT integration of the continuity equations is performed . . .
C---

C-2

Appendix C

Call GASDYN (1, NX, BC1, BCN, DELTAT)
TIME = TIME + DELTAT

9999 Continue ! End of the loop over timesteps.

Stop
End

C===

Subroutine GASDYN (K1, KN, BC1, BCN, DT)

C---
c
c This routine integrates the gasdynamic equations using the momentum
c component RVRN as the direction of integration and the momentum RVTN
c as the transverse direction. In 2D models the two directions of
c integration are chosen by exchanging RVRN and RVTN in Common.

c K1 . . . Index of the integration’s first cell
c KN . . . Index of the integration’s last cell
c BC1 . . . Indicates boundary condition on integration at K1
c BCN . . . Indicates boundary condition on integration at K1
c DT . . . Timestep for the integrations of this step
c
C---

Implicit NONE
Integer NPT, K1, K1P, BC1, BCN, K, KN, KNP, IT
Parameter (NPT = 202)
Logical PBC
Real SBC1, SRV1, SBCN, SRVN, VRHO1, VRHON
Real VRVR1, VRVRN, VRVT1, VRVTN, VERG1, VERGN
Real MPINT(NPT), VEL(NPT), UNIT(NPT), ZERO(NPT)
Real RHOO(NPT), RVRO(NPT), RVTO(NPT), ERGO(NPT)
Real VINT(NPT), PRE(NPT), MPVINT(NPT)
Real DTSUB, DT, RELAX
Data UNIT / NPT*1.0 /, ZERO / NPT*0.0 /

Real RHO_IN, PRE_IN, VEL_IN, GAMMA0
Real RHOAMB, PREAMB, VELAMB, GAMMAM
Real RHON(NPT), RVRN(NPT), RVTN(NPT), ERGN(NPT)
Common / ARRAYS / RHON, RVRN, RVTN, ERGN, RELAX,

& RHO_IN, PRE_IN, VEL_IN, GAMMA0,
& RHOAMB, PREAMB, VELAMB, GAMMAM

c Prepare for the time integration. Index K is either I or J depending
c on the definitions of RVRN and RVTN. Copies of the physical variable
c are needed to recover values for the whole step integration . . .
C---

KNP = KN + 1
K1P = K1 + 1
PBC = .false.
If (BC1.eq.3 .OR. BCN.eq.3) PBC = .true.
Do 50 K = K1, KN

RHOO(K) = RHON(K)
RVRO(K) = RVRN(K)
RVTO(K) = RVTN(K)

50 ERGO(K) = ERGN(K)

c Integrate first the half step then the whole step . . .

C-3

Appendix C

C---
Do 500 IT = 1, 2

DTSUB = 0.5*DT*FLOAT(IT)

Do 100 K = K1, KN
VEL(K) = RVRN(K)/RHON(K)

100 PRE(K) = GAMMAM*(ERGN(K)
& - 0.5*(RVRN(K)**2 + RVTN(K)**2)/RHON(K))

c Calculate the interface velocities and pressures as weighted values
c of the cell-centered values computed just above . . .
C---

Do 200 K = K1+1, KN
MPVINT(K) = 1.0/(RHON(K) + RHON(K-1))
VINT(K) = (VEL(K)*RHON(K-1) + VEL(K-1)*RHON(K))*MPVINT(K)
MPINT(K) = -(PRE(K)*RHON(K-1) + PRE(K-1)*RHON(K))*MPVINT(K)

200 MPVINT(K) = -(PRE(K)*VEL(K)*RHON(K-1)
& + PRE(K-1)*VEL(K-1)*RHON(K))*MPVINT(K)

c The unweighted interface averages can be computed as follows . . .
c VINT(K) = 0.5*(VEL(K) + VEL(K-1))
c MPINT(K) = -0.5*(PRE(K) + PRE(K-1))
c 200 MPVINT(K) = MPINT(K)*VINT(K)

c Call the FCT utility routines and set the boundary conditions. Other
c boundary conditions could be added for inflow, outflow, etc . . .
c BC1, BCN = 1 => ideal solid wall or axis boundary condition
c BC1, BCN = 2 => an extrapolative outflow boundary condition
c BC1, BCN = 3 => periodic boundary conditions . . .
c BC1, BCN = 4 => specified boundary values (e.g. shock tube problem)
C---

Go To (310, 320, 330, 340), BC1
310 VINT(K1) = 0.0

MPINT(K1) = - PRE(K1)
MPVINT(K1) = 0.0
Go To 350

320 VINT(K1) = VEL(K1)*(1.0 - RELAX)
MPINT(K1) = - PRE(K1)*(1.0 - RELAX) - RELAX*PRE_IN
MPVINT(K1) = MPINT(K1)*VINT(K1)
Go To 350

330 MPVINT(K1) = 1.0/(RHON(K1) + RHON(KN))
VINT(K1) = (VEL(K1)*RHON(KN)+VEL(KN)*RHON(K1)) *MPVINT(K1)
MPINT(K1) = -(PRE(K1)*RHON(KN)+PRE(KN)*RHON(K1))*MPVINT(K1)
MPVINT(K1) = -(PRE(K1)*VEL(K1)*RHON(KN)

& + PRE(KN)*VEL(KN)*RHON(K1))*MPVINT(K1)
Go To 350

340 VINT(K1) = VEL_IN
MPINT(K1) = - PRE_IN
MPVINT(K1) = - PRE_IN*VEL_IN

350 Go To (410, 420, 430, 440), BCN
410 VINT(KNP) = 0.0

MPINT(KNP) = - PRE(KN)
MPVINT(KNP) = 0.0
Go To 450

420 VINT(KNP) = VEL(KN)*(1.0 - RELAX)
MPINT(KNP) = - PRE(KN)*(1.0 - RELAX) - RELAX*PREAMB
MPVINT(KNP) = MPINT(KNP)*VINT(KNP)
Go To 450

430 VINT(KNP) = VINT(K1)
MPINT(KNP) = MPINT(K1)

C-4

Appendix C

MPVINT(KNP) = MPVINT(K1)
Go To 450

440 VINT(KNP) = VELAMB
MPINT(KNP) = - PREAMB
MPVINT(KNP) = - PREAMB*VELAMB

450 Continue

c The velocity dependent FCT coefficients are set and the boundary
c condition calculations are completed. Here the periodic boundary
c conditions require no action as (S)lope and (V)alue boundary value
c specifiers are ignored in LCPFCT when PBC = .true.
C---

Call VELOCITY (VINT, K1, KNP, DTSUB)

Go To (510, 520, 550, 540), BC1
510 Call ZEROFLUX (K1)

SBC1 = 1.0
SRV1 = -1.0
VRHO1 = 0.0
VRVR1 = 0.0
VRVT1 = 0.0
VERG1 = 0.0
Go To 550

520 Call ZERODIFF (K1)
SBC1 = 1.0 - RELAX
SRV1 = 1.0 - RELAX
VRHO1 = RELAX*RHO_IN
VRVR1 = 0.0
VRVT1 = 0.0
VERG1 = RELAX*PRE_IN/GAMMAM
Go To 550

540 SBC1 = 0.0
SRV1 = 0.0
VRHO1 = RHO_IN
VRVR1 = RHO_IN*VEL_IN
VRVT1 = 0.0
VERG1 = PRE_IN/GAMMAM + 0.5*RHO_IN*VEL_IN**2

550 Go To (610, 620, 650, 640), BCN
610 Call ZEROFLUX (KNP)

SBCN = 1.0
SRVN = -1.0
VRHON = 0.0
VRVRN = 0.0
VRVTN = 0.0
VERGN = 0.0
Go To 650

620 Call ZERODIFF (KNP)
SBCN = 1.0 - RELAX
SRVN = 1.0 - RELAX
VRHON = RELAX*RHOAMB
VRVRN = 0.0
VRVTN = 0.0
VERGN = RELAX*PREAMB/GAMMAM
Go To 650

640 SBCN = 0.0
SRVN = 0.0
VRHON = RHOAMB
VRVRN = RHOAMB*VELAMB
VRVTN = 0.0
VERGN = PREAMB/GAMMAM + 0.5*RHOAMB*VELAMB**2

C-5

Appendix C

650 Continue

c Integrate the continuity equations using LCPFCT . . .
C---

Call LCPFCT (RHOO, RHON, K1,KN, SBC1,VRHO1, SBCN,VRHON, PBC)

Call SOURCES(K1,KN, DTSUB, 5, UNIT, MPINT,
& MPINT(K1), MPINT(KNP))

Call LCPFCT (RVRO, RVRN, K1,KN, SRV1,VRVR1, SRVN,VRVRN, PBC)

Call LCPFCT (RVTO, RVTN, K1,KN, SBC1,VRVT1, SBCN,VRVTN, PBC)

Call SOURCES(K1,KN, DTSUB, 4, UNIT, MPVINT,
& MPVINT(K1), MPVINT(KNP))

Call LCPFCT (ERGO, ERGN, K1,KN, SBC1,VERG1, SBCN,VERGN, PBC)

500 Continue ! End of halfstep-wholestep loop.
Return
End

C===

C-6

Appendix C

LCPFCT Test # 2 - Progressing Shock: Step = 0 NX = 50 DT = 0.050

I Density Temperature Pressure Velocity Energy Interfaces

1 5.0000E+00 5.8000E+00 2.9000E+01 1.8168E+00 8.0752E+01 0.0000E+00
2 5.0000E+00 5.8000E+00 2.9000E+01 1.8168E+00 8.0752E+01 1.0000E+00
3 5.0000E+00 5.8000E+00 2.9000E+01 1.8168E+00 8.0752E+01 2.0000E+00
4 5.0000E+00 5.8000E+00 2.9000E+01 1.8168E+00 8.0752E+01 3.0000E+00
5 5.0000E+00 5.8000E+00 2.9000E+01 1.8168E+00 8.0752E+01 4.0000E+00
6 5.0000E+00 5.8000E+00 2.9000E+01 1.8168E+00 8.0752E+01 5.0000E+00
7 5.0000E+00 5.8000E+00 2.9000E+01 1.8168E+00 8.0752E+01 6.0000E+00
8 5.0000E+00 5.8000E+00 2.9000E+01 1.8168E+00 8.0752E+01 7.0000E+00
9 5.0000E+00 5.8000E+00 2.9000E+01 1.8168E+00 8.0752E+01 8.0000E+00
10 5.0000E+00 5.8000E+00 2.9000E+01 1.8168E+00 8.0752E+01 9.0000E+00
11 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 1.0000E+01
12 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 1.1000E+01
13 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 1.2000E+01
14 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 1.3000E+01
15 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 1.4000E+01
16 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 1.5000E+01
17 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 1.6000E+01
18 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 1.7000E+01
19 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 1.8000E+01
20 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 1.9000E+01
21 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 2.0000E+01
22 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 2.1000E+01
23 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 2.2000E+01
24 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 2.3000E+01
25 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 2.4000E+01
26 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 2.5000E+01
27 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 2.6000E+01
28 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 2.7000E+01
29 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 2.8000E+01
30 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 2.9000E+01
31 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 3.0000E+01
32 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 3.1000E+01
33 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 3.2000E+01
34 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 3.3000E+01
35 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 3.4000E+01
36 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 3.5000E+01
37 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 3.6000E+01
38 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 3.7000E+01
39 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 3.8000E+01
40 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 3.9000E+01
41 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.0000E+01
42 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.1000E+01
43 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.2000E+01
44 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.3000E+01
45 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.4000E+01
46 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.5000E+01
47 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.6000E+01
48 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.7000E+01
49 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.8000E+01
50 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.9000E+01

Conservation Sums
9.0000E+01 8.2500E+02 -2.5804E+01 1.0776E+03

LCPFCT Test # 2 - Progressing Shock: Step = 150 NX = 50 DT = 0.050

C-7

Appendix C

I Density Temperature Pressure Velocity Energy Interfaces

1 4.9983E+00 5.7992E+00 2.8986E+01 1.8177E+00 8.0724E+01 0.0000E+00
2 4.9983E+00 5.7992E+00 2.8986E+01 1.8177E+00 8.0723E+01 1.0000E+00
3 4.9980E+00 5.7991E+00 2.8984E+01 1.8179E+00 8.0719E+01 2.0000E+00
4 4.9974E+00 5.7988E+00 2.8979E+01 1.8183E+00 8.0708E+01 3.0000E+00
5 4.9969E+00 5.7986E+00 2.8975E+01 1.8186E+00 8.0701E+01 4.0000E+00
6 4.9962E+00 5.7983E+00 2.8970E+01 1.8189E+00 8.0689E+01 5.0000E+00
7 4.9958E+00 5.7980E+00 2.8966E+01 1.8191E+00 8.0680E+01 6.0000E+00
8 4.9953E+00 5.7979E+00 2.8962E+01 1.8194E+00 8.0674E+01 7.0000E+00
9 4.9949E+00 5.7977E+00 2.8958E+01 1.8197E+00 8.0666E+01 8.0000E+00
10 4.9946E+00 5.7973E+00 2.8955E+01 1.8199E+00 8.0659E+01 9.0000E+00
11 4.9941E+00 5.7973E+00 2.8952E+01 1.8201E+00 8.0653E+01 1.0000E+01
12 4.9937E+00 5.7972E+00 2.8950E+01 1.8203E+00 8.0648E+01 1.1000E+01
13 4.9936E+00 5.7969E+00 2.8947E+01 1.8205E+00 8.0643E+01 1.2000E+01
14 4.9933E+00 5.7967E+00 2.8945E+01 1.8206E+00 8.0638E+01 1.3000E+01
15 4.9929E+00 5.7969E+00 2.8944E+01 1.8208E+00 8.0636E+01 1.4000E+01
16 4.9929E+00 5.7967E+00 2.8942E+01 1.8208E+00 8.0632E+01 1.5000E+01
17 4.9929E+00 5.7966E+00 2.8942E+01 1.8209E+00 8.0632E+01 1.6000E+01
18 4.9929E+00 5.7966E+00 2.8942E+01 1.8209E+00 8.0632E+01 1.7000E+01
19 4.9929E+00 5.7966E+00 2.8942E+01 1.8208E+00 8.0632E+01 1.8000E+01
20 4.9931E+00 5.7968E+00 2.8944E+01 1.8208E+00 8.0637E+01 1.9000E+01
21 4.9932E+00 5.7969E+00 2.8945E+01 1.8206E+00 8.0638E+01 2.0000E+01
22 4.9932E+00 5.7976E+00 2.8949E+01 1.8203E+00 8.0645E+01 2.1000E+01
23 4.9937E+00 5.7983E+00 2.8955E+01 1.8201E+00 8.0659E+01 2.2000E+01
24 4.9938E+00 5.7989E+00 2.8958E+01 1.8196E+00 8.0663E+01 2.3000E+01
25 4.9946E+00 5.7994E+00 2.8966E+01 1.8191E+00 8.0678E+01 2.4000E+01
26 4.9946E+00 5.8013E+00 2.8975E+01 1.8186E+00 8.0697E+01 2.5000E+01
27 4.9946E+00 5.8018E+00 2.8977E+01 1.8186E+00 8.0703E+01 2.6000E+01
28 4.9948E+00 5.8020E+00 2.8980E+01 1.8178E+00 8.0702E+01 2.7000E+01
29 4.9954E+00 5.8049E+00 2.8998E+01 1.8173E+00 8.0744E+01 2.8000E+01
30 4.9954E+00 5.8072E+00 2.9009E+01 1.8172E+00 8.0771E+01 2.9000E+01
31 4.9954E+00 5.8074E+00 2.9010E+01 1.8171E+00 8.0773E+01 3.0000E+01
32 4.9948E+00 5.8091E+00 2.9015E+01 1.8159E+00 8.0773E+01 3.1000E+01
33 3.1692E+00 5.6326E+00 1.7851E+01 9.4539E-01 4.6043E+01 3.2000E+01
34 9.9995E-01 9.9907E-01 9.9902E-01 -2.9166E+00 6.7506E+00 3.3000E+01
35 9.9981E-01 9.9897E-01 9.9878E-01 -2.9170E+00 6.7506E+00 3.4000E+01
36 9.9981E-01 9.9950E-01 9.9931E-01 -2.9166E+00 6.7507E+00 3.5000E+01
37 9.9993E-01 1.0001E+00 1.0000E+00 -2.9162E+00 6.7518E+00 3.6000E+01
38 1.0000E+00 1.0000E+00 1.0000E+00 -2.9160E+00 6.7518E+00 3.7000E+01
39 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 3.8000E+01
40 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 3.9000E+01
41 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.0000E+01
42 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.1000E+01
43 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.2000E+01
44 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.3000E+01
45 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.4000E+01
46 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.5000E+01
47 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.6000E+01
48 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.7000E+01
49 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.8000E+01
50 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.9000E+01

Conservation Sums
1.8000E+02 2.4044E+03 2.4420E+02 2.7426E+03

LCPFCT Test # 2 - Progressing Shock: Step = 200 NX = 50 DT = 0.050

I Density Temperature Pressure Velocity Energy Interfaces

C-8

Appendix C

1 4.9968E+00 5.7985E+00 2.8974E+01 1.8186E+00 8.0698E+01 0.0000E+00
2 4.9967E+00 5.7985E+00 2.8973E+01 1.8186E+00 8.0696E+01 1.0000E+00
3 4.9966E+00 5.7985E+00 2.8973E+01 1.8187E+00 8.0696E+01 2.0000E+00
4 4.9959E+00 5.7981E+00 2.8967E+01 1.8191E+00 8.0683E+01 3.0000E+00
5 4.9956E+00 5.7980E+00 2.8964E+01 1.8193E+00 8.0678E+01 4.0000E+00
6 4.9951E+00 5.7977E+00 2.8960E+01 1.8196E+00 8.0669E+01 5.0000E+00
7 4.9948E+00 5.7976E+00 2.8958E+01 1.8198E+00 8.0665E+01 6.0000E+00
8 4.9942E+00 5.7974E+00 2.8953E+01 1.8200E+00 8.0655E+01 7.0000E+00
9 4.9939E+00 5.7972E+00 2.8951E+01 1.8202E+00 8.0650E+01 8.0000E+00
10 4.9937E+00 5.7970E+00 2.8948E+01 1.8204E+00 8.0645E+01 9.0000E+00
11 4.9932E+00 5.7970E+00 2.8946E+01 1.8206E+00 8.0640E+01 1.0000E+01
12 4.9931E+00 5.7968E+00 2.8944E+01 1.8207E+00 8.0636E+01 1.1000E+01
13 4.9930E+00 5.7967E+00 2.8943E+01 1.8208E+00 8.0634E+01 1.2000E+01
14 4.9929E+00 5.7967E+00 2.8943E+01 1.8208E+00 8.0634E+01 1.3000E+01
15 4.9929E+00 5.7967E+00 2.8943E+01 1.8208E+00 8.0634E+01 1.4000E+01
16 4.9930E+00 5.7967E+00 2.8943E+01 1.8208E+00 8.0634E+01 1.5000E+01
17 4.9930E+00 5.7968E+00 2.8943E+01 1.8208E+00 8.0634E+01 1.6000E+01
18 4.9932E+00 5.7969E+00 2.8945E+01 1.8207E+00 8.0638E+01 1.7000E+01
19 4.9936E+00 5.7969E+00 2.8947E+01 1.8204E+00 8.0642E+01 1.8000E+01
20 4.9940E+00 5.7973E+00 2.8952E+01 1.8201E+00 8.0652E+01 1.9000E+01
21 4.9947E+00 5.7974E+00 2.8957E+01 1.8198E+00 8.0662E+01 2.0000E+01
22 4.9955E+00 5.7980E+00 2.8964E+01 1.8194E+00 8.0677E+01 2.1000E+01
23 4.9963E+00 5.7981E+00 2.8969E+01 1.8188E+00 8.0686E+01 2.2000E+01
24 4.9971E+00 5.7987E+00 2.8977E+01 1.8185E+00 8.0704E+01 2.3000E+01
25 4.9981E+00 5.7990E+00 2.8984E+01 1.8181E+00 8.0720E+01 2.4000E+01
26 4.9981E+00 5.7996E+00 2.8987E+01 1.8175E+00 8.0723E+01 2.5000E+01
27 4.9988E+00 5.8005E+00 2.8995E+01 1.8171E+00 8.0741E+01 2.6000E+01
28 4.9996E+00 5.8007E+00 2.9002E+01 1.8168E+00 8.0755E+01 2.7000E+01
29 4.9997E+00 5.8020E+00 2.9008E+01 1.8163E+00 8.0768E+01 2.8000E+01
30 4.9996E+00 5.8025E+00 2.9010E+01 1.8158E+00 8.0767E+01 2.9000E+01
31 4.9996E+00 5.8039E+00 2.9017E+01 1.8156E+00 8.0784E+01 3.0000E+01
32 4.9996E+00 5.8050E+00 2.9022E+01 1.8152E+00 8.0793E+01 3.1000E+01
33 4.9990E+00 5.8061E+00 2.9025E+01 1.8153E+00 8.0798E+01 3.2000E+01
34 4.9987E+00 5.8069E+00 2.9027E+01 1.8148E+00 8.0800E+01 3.3000E+01
35 4.9980E+00 5.8080E+00 2.9028E+01 1.8147E+00 8.0800E+01 3.4000E+01
36 4.9979E+00 5.8084E+00 2.9030E+01 1.8147E+00 8.0804E+01 3.5000E+01
37 4.9977E+00 5.8088E+00 2.9030E+01 1.8148E+00 8.0805E+01 3.6000E+01
38 4.9977E+00 5.8083E+00 2.9028E+01 1.8153E+00 8.0805E+01 3.7000E+01
39 4.9942E+00 5.8118E+00 2.9025E+01 1.7854E+00 8.0522E+01 3.8000E+01
40 4.9107E+00 5.8264E+00 2.8612E+01 1.8047E+00 7.9527E+01 3.9000E+01
41 1.2490E+00 2.4009E+00 2.9988E+00 -2.0546E+00 1.0133E+01 4.0000E+01
42 9.9955E-01 9.9660E-01 9.9616E-01 -2.9194E+00 6.7498E+00 4.1000E+01
43 9.9955E-01 9.9832E-01 9.9788E-01 -2.9179E+00 6.7498E+00 4.2000E+01
44 9.9971E-01 9.9942E-01 9.9912E-01 -2.9168E+00 6.7505E+00 4.3000E+01
45 1.0000E+00 1.0001E+00 1.0001E+00 -2.9160E+00 6.7518E+00 4.4000E+01
46 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.5000E+01
47 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.6000E+01
48 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.7000E+01
49 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.8000E+01
50 1.0000E+00 1.0000E+00 1.0000E+00 -2.9161E+00 6.7518E+00 4.9000E+01

Conservation Sums
2.1000E+02 2.9269E+03 3.3419E+02 3.2976E+03

C-9

Appendix D

C===

Program DIAPHRAGM

C---
c
c 1D BURSTING DIAPHRAGM PROBLEM - LCPFCT Test # 3 August 1992
c
c This program runs a very simple 1D bursting diaphragm test problem
c using LCPFCT and its utility routines. The fluid is ideal and
c inviscid with constant GAMMA = 1.667. The end walls are reflecting
c so the fluid should be totally contained in the domain.
c
C---

Implicit NONE

Integer NPT, ALPHA, BC1, BCN, MAXSTP, IPRINT
Parameter (NPT = 202)
Integer NX, NXP, MX, ISTEP, JSTEP, I, LOUT
Real TIME, DELTAX, DELTAT, DX_JIGGLE
REAL XGRID(NPT), XNEXT(NPT), DXOFF, DX_OSC
Real RHOSUM, RHVSUM, PRESUM, ERGSUM
Real VNEW(NPT), PNEW(NPT), TNEW(NPT)
Real VELX, VXPAND, SCALEG
Real ERG_IN, ERGAMB, RELAX

Real RHO_IN, PRE_IN, VEL_IN, GAMMA0
Real RHOAMB, PREAMB, VELAMB, GAMMAM
Real RHON(NPT), RVXN(NPT), RVTN(NPT), ERGN(NPT)
Common / ARRAYS / RHON, RVXN, RVTN, ERGN, RELAX,

& RHO_IN, PRE_IN, VEL_IN, GAMMA0,
& RHOAMB, PREAMB, VELAMB, GAMMAM

1000 Format (’1’, /, ’ LCPFCT Test # 3 - Bursting Diaphragm:’,
& ’ Step =’, I4, ’ NX =’, I3, ’ DT =’, F6.3, /)

1001 Format (2X, I3, 6F12.5)
1002 Format (’ I Density Temperature Pressure ’,

& ’ Velocity Energy Interfaces’, /)
1003 Format (’0 Conservation Sums ’, /, 5X, F12.5, 12X, 3F12.5, /)

c The Bursting Diaphragm run control parameters are specified here.
c (change for other cases) . . .
C---

DELTAX = 1.0 ! Cell size
DELTAT = 0.05 ! Timestep for the calculation
ALPHA = 1 ! (1 = Cartesian, 2 = Cylindrical, 3 = Spherical)
LOUT = 11 ! Logical unit number of printed output device
NX = 100 ! Number of cells in the computational domain
MX = 60 ! Number of cells initialized behind the shock
MAXSTP = 1601 ! Maximum number of timesteps of length DELTAT
IPRINT = 50 ! Frequency of intermediate result printouts

c Initialize the variables in Common for use in GASDYN . . .
C---

RHO_IN = 1.0 ! Initial mass density behind the diaphragm
PRE_IN = 10.0 ! Initial (higher) pressure behind the diaphragm
VEL_IN = 0.0 ! Initial velocity
VXPAND = 3.1 ! Characteristic system expansion velocity
DX_OSC = 0.125 ! Amplitude of the grid jiggling after step 200
GAMMA0 = 1.66667 ! Gas constant

D-1

Appendix D

PREAMB = 1.0 ! Ambient (unshocked) pressure on the right
RHOAMB = 1.0 ! Density of the unshocked fluid on the right
VELAMB = 0.0 ! Initial velocity
RELAX = 0.002 ! Relaxation rate, used when BC1, BCN = 2
GAMMAM = GAMMA0 - 1.0
ERGAMB = PREAMB/(GAMMA0 - 1.0) + 0.5*RHOAMB*VELAMB**2
ERG_IN = PRE_IN/(GAMMA0 - 1.0) + 0.5*RHO_IN*VEL_IN**2

c Set up the fluid variables with the diaphragm at interface MX+1 . . .
C---

Do 10 I = MX+1, NX
RHON(I) = RHOAMB
RVXN(I) = RHOAMB*VELAMB
RVTN(I) = 0.0

10 ERGN(I) = ERGAMB
Do 20 I = 1, MX

RHON(I) = RHO_IN
RVXN(I) = RHO_IN*VEL_IN
RVTN(I) = 0.0

20 ERGN(I) = ERG_IN

c Begin loop over timesteps . . .
C---

BC1 = 1
BCN = 1
Call RESIDIFF (0.998)

TIME = 0.0
Do 9999 ISTEP = 1, MAXSTP

c Define the cell interface locations and physical variables. The grid
c is expanded at the rate VELX at I = NXP after step 201 (as the shock
c approaches the boundary) by making XNEXT at the end of the timestep
c proportionately larger than XGRID at the beginning of the step. The
c system length is then renormalized to its original size, capturing
c the similarity solution by equating the grid expansion to the shock
c velocity. A small jiggle is added to this systematic expansion to
c show the added flexibility of the continuity solver.
C---

NXP = NX + 1
If (ISTEP .gt. 200) Then

VELX = VXPAND
DXOFF = DX_OSC
If (MOD(ISTEP,2) .eq. 0) DXOFF = - DX_OSC

Else
VELX = 0.0
DXOFF = 0.0

End If

Do 30 I = 1, NXP
XGRID(I) = FLOAT(I-MX-1)*DELTAX

30 XNEXT(I) = XGRID(I)
SCALEG = (VELX*DELTAT + XGRID(NXP))/XGRID(NXP)
Do 40 I = 3, NX-2

XNEXT(I) = (XNEXT(I) + DXOFF)*SCALEG
40 XGRID(I) = XGRID(I) - DXOFF

Call MAKEGRID (XGRID, XNEXT, 1, NXP, ALPHA)

c The results are printed when required . . .
C---

D-2

Appendix D

If (MOD(ISTEP-1, IPRINT) .eq. 0) Then
JSTEP = ISTEP - 1
IPRINT = 2*(ISTEP - 1)
If (ISTEP .lt. 200) IPRINT = 50
Write (LOUT, 1000) JSTEP, NX, DELTAT
Do 50 I = 1, NX

VNEW(I) = RVXN(I)/RHON(I)
PNEW(I) = GAMMAM*(ERGN(I) - 0.5*RVXN(I)*VNEW(I))

50 TNEW(I) = PNEW(I)/RHON(I)
Write (LOUT, 1002)
Write (LOUT, 1001) (I, RHON(I), TNEW(I), PNEW(I),

& VNEW(I), ERGN(I), XGRID(I), I = 1, NX)
Call CONSERVE (RHON, 1, NX, RHOSUM)
Call CONSERVE (PNEW, 1, NX, PRESUM)
Call CONSERVE (RVXN, 1, NX, RHVSUM)
Call CONSERVE (ERGN, 1, NX, ERGSUM)
Write (LOUT, 1003) RHOSUM, PRESUM, RHVSUM, ERGSUM

End If

c The FCT integration of the continuity equations is performed . . .
C---

Call GASDYN (1, NX, BC1, BCN, DELTAT)
TIME = TIME + DELTAT

9999 Continue ! End of the loop over timesteps.

Stop
End

C===

D-3

Appendix D

LCPFCT Test # 3 - Bursting Diaphragm: Step = 0 NX =100 DT = 0.050

I Density Temperature Pressure Velocity Energy Interfaces

1 1.00000 10.00000 10.00000 0.00000 14.99993 -60.00000
2 1.00000 10.00000 10.00000 0.00000 14.99993 -59.00000
3 1.00000 10.00000 10.00000 0.00000 14.99993 -58.00000
4 1.00000 10.00000 10.00000 0.00000 14.99993 -57.00000
5 1.00000 10.00000 10.00000 0.00000 14.99993 -56.00000
6 1.00000 10.00000 10.00000 0.00000 14.99993 -55.00000
7 1.00000 10.00000 10.00000 0.00000 14.99993 -54.00000
8 1.00000 10.00000 10.00000 0.00000 14.99993 -53.00000
9 1.00000 10.00000 10.00000 0.00000 14.99993 -52.00000
10 1.00000 10.00000 10.00000 0.00000 14.99993 -51.00000
11 1.00000 10.00000 10.00000 0.00000 14.99993 -50.00000
12 1.00000 10.00000 10.00000 0.00000 14.99993 -49.00000
13 1.00000 10.00000 10.00000 0.00000 14.99993 -48.00000
14 1.00000 10.00000 10.00000 0.00000 14.99993 -47.00000
15 1.00000 10.00000 10.00000 0.00000 14.99993 -46.00000
16 1.00000 10.00000 10.00000 0.00000 14.99993 -45.00000
17 1.00000 10.00000 10.00000 0.00000 14.99993 -44.00000
18 1.00000 10.00000 10.00000 0.00000 14.99993 -43.00000
19 1.00000 10.00000 10.00000 0.00000 14.99993 -42.00000
20 1.00000 10.00000 10.00000 0.00000 14.99993 -41.00000
21 1.00000 10.00000 10.00000 0.00000 14.99993 -40.00000
22 1.00000 10.00000 10.00000 0.00000 14.99993 -39.00000
23 1.00000 10.00000 10.00000 0.00000 14.99993 -38.00000
24 1.00000 10.00000 10.00000 0.00000 14.99993 -37.00000
25 1.00000 10.00000 10.00000 0.00000 14.99993 -36.00000
26 1.00000 10.00000 10.00000 0.00000 14.99993 -35.00000
27 1.00000 10.00000 10.00000 0.00000 14.99993 -34.00000
28 1.00000 10.00000 10.00000 0.00000 14.99993 -33.00000
29 1.00000 10.00000 10.00000 0.00000 14.99993 -32.00000
30 1.00000 10.00000 10.00000 0.00000 14.99993 -31.00000
31 1.00000 10.00000 10.00000 0.00000 14.99993 -30.00000
32 1.00000 10.00000 10.00000 0.00000 14.99993 -29.00000
33 1.00000 10.00000 10.00000 0.00000 14.99993 -28.00000
34 1.00000 10.00000 10.00000 0.00000 14.99993 -27.00000
35 1.00000 10.00000 10.00000 0.00000 14.99993 -26.00000
36 1.00000 10.00000 10.00000 0.00000 14.99993 -25.00000
37 1.00000 10.00000 10.00000 0.00000 14.99993 -24.00000
38 1.00000 10.00000 10.00000 0.00000 14.99993 -23.00000
39 1.00000 10.00000 10.00000 0.00000 14.99993 -22.00000
40 1.00000 10.00000 10.00000 0.00000 14.99993 -21.00000
41 1.00000 10.00000 10.00000 0.00000 14.99993 -20.00000
42 1.00000 10.00000 10.00000 0.00000 14.99993 -19.00000
43 1.00000 10.00000 10.00000 0.00000 14.99993 -18.00000
44 1.00000 10.00000 10.00000 0.00000 14.99993 -17.00000
45 1.00000 10.00000 10.00000 0.00000 14.99993 -16.00000
46 1.00000 10.00000 10.00000 0.00000 14.99993 -15.00000
47 1.00000 10.00000 10.00000 0.00000 14.99993 -14.00000
48 1.00000 10.00000 10.00000 0.00000 14.99993 -13.00000
49 1.00000 10.00000 10.00000 0.00000 14.99993 -12.00000
50 1.00000 10.00000 10.00000 0.00000 14.99993 -11.00000
51 1.00000 10.00000 10.00000 0.00000 14.99993 -10.00000
52 1.00000 10.00000 10.00000 0.00000 14.99993 -9.00000
53 1.00000 10.00000 10.00000 0.00000 14.99993 -8.00000
54 1.00000 10.00000 10.00000 0.00000 14.99993 -7.00000
55 1.00000 10.00000 10.00000 0.00000 14.99993 -6.00000
56 1.00000 10.00000 10.00000 0.00000 14.99993 -5.00000
57 1.00000 10.00000 10.00000 0.00000 14.99993 -4.00000

D-4

Appendix D

58 1.00000 10.00000 10.00000 0.00000 14.99993 -3.00000
59 1.00000 10.00000 10.00000 0.00000 14.99993 -2.00000
60 1.00000 10.00000 10.00000 0.00000 14.99993 -1.00000
61 1.00000 1.00000 1.00000 0.00000 1.49999 0.00000
62 1.00000 1.00000 1.00000 0.00000 1.49999 1.00000
63 1.00000 1.00000 1.00000 0.00000 1.49999 2.00000
64 1.00000 1.00000 1.00000 0.00000 1.49999 3.00000
65 1.00000 1.00000 1.00000 0.00000 1.49999 4.00000
66 1.00000 1.00000 1.00000 0.00000 1.49999 5.00000
67 1.00000 1.00000 1.00000 0.00000 1.49999 6.00000
68 1.00000 1.00000 1.00000 0.00000 1.49999 7.00000
69 1.00000 1.00000 1.00000 0.00000 1.49999 8.00000
70 1.00000 1.00000 1.00000 0.00000 1.49999 9.00000
71 1.00000 1.00000 1.00000 0.00000 1.49999 10.00000
72 1.00000 1.00000 1.00000 0.00000 1.49999 11.00000
73 1.00000 1.00000 1.00000 0.00000 1.49999 12.00000
74 1.00000 1.00000 1.00000 0.00000 1.49999 13.00000
75 1.00000 1.00000 1.00000 0.00000 1.49999 14.00000
76 1.00000 1.00000 1.00000 0.00000 1.49999 15.00000
77 1.00000 1.00000 1.00000 0.00000 1.49999 16.00000
78 1.00000 1.00000 1.00000 0.00000 1.49999 17.00000
79 1.00000 1.00000 1.00000 0.00000 1.49999 18.00000
80 1.00000 1.00000 1.00000 0.00000 1.49999 19.00000
81 1.00000 1.00000 1.00000 0.00000 1.49999 20.00000
82 1.00000 1.00000 1.00000 0.00000 1.49999 21.00000
83 1.00000 1.00000 1.00000 0.00000 1.49999 22.00000
84 1.00000 1.00000 1.00000 0.00000 1.49999 23.00000
85 1.00000 1.00000 1.00000 0.00000 1.49999 24.00000
86 1.00000 1.00000 1.00000 0.00000 1.49999 25.00000
87 1.00000 1.00000 1.00000 0.00000 1.49999 26.00000
88 1.00000 1.00000 1.00000 0.00000 1.49999 27.00000
89 1.00000 1.00000 1.00000 0.00000 1.49999 28.00000
90 1.00000 1.00000 1.00000 0.00000 1.49999 29.00000
91 1.00000 1.00000 1.00000 0.00000 1.49999 30.00000
92 1.00000 1.00000 1.00000 0.00000 1.49999 31.00000
93 1.00000 1.00000 1.00000 0.00000 1.49999 32.00000
94 1.00000 1.00000 1.00000 0.00000 1.49999 33.00000
95 1.00000 1.00000 1.00000 0.00000 1.49999 34.00000
96 1.00000 1.00000 1.00000 0.00000 1.49999 35.00000
97 1.00000 1.00000 1.00000 0.00000 1.49999 36.00000
98 1.00000 1.00000 1.00000 0.00000 1.49999 37.00000
99 1.00000 1.00000 1.00000 0.00000 1.49999 38.00000
100 1.00000 1.00000 1.00000 0.00000 1.49999 39.00000

Conservation Sums
100.00000 640.00000 0.00000 959.99609

LCPFCT Test # 3 - Bursting Diaphragm: Step = 100 NX =100 DT = 0.050

I Density Temperature Pressure Velocity Energy Interfaces

1 1.00000 10.00000 10.00000 0.00000 14.99993 -60.00000
2 1.00000 10.00000 10.00000 0.00000 14.99993 -59.00000
3 1.00000 10.00000 10.00000 0.00000 14.99993 -58.00000
4 1.00000 10.00000 10.00000 0.00000 14.99993 -57.00000
5 1.00000 10.00000 10.00000 0.00000 14.99993 -56.00000
6 1.00000 10.00000 10.00000 0.00000 14.99993 -55.00000
7 1.00000 10.00000 10.00000 0.00000 14.99993 -54.00000
8 1.00000 10.00000 10.00000 0.00000 14.99993 -53.00000
9 1.00000 10.00000 10.00000 0.00000 14.99993 -52.00000
10 1.00000 10.00000 10.00000 0.00000 14.99993 -51.00000

D-5

Appendix D

11 1.00000 10.00000 10.00000 0.00000 14.99993 -50.00000
12 1.00000 10.00000 10.00000 0.00000 14.99993 -49.00000
13 1.00000 10.00000 10.00000 0.00000 14.99993 -48.00000
14 1.00000 10.00000 10.00000 0.00000 14.99993 -47.00000
15 1.00000 10.00000 10.00000 0.00000 14.99993 -46.00000
16 1.00000 10.00000 10.00000 0.00000 14.99993 -45.00000
17 1.00000 10.00000 10.00000 0.00000 14.99993 -44.00000
18 1.00000 10.00000 10.00000 0.00000 14.99993 -43.00000
19 1.00000 10.00000 10.00000 0.00000 14.99993 -42.00000
20 1.00000 10.00000 10.00000 0.00000 14.99993 -41.00000
21 1.00000 10.00000 10.00000 0.00000 14.99993 -40.00000
22 1.00000 10.00000 10.00000 0.00000 14.99993 -39.00000
23 1.00000 10.00000 10.00000 0.00000 14.99993 -38.00000
24 1.00000 10.00000 10.00000 0.00000 14.99993 -37.00000
25 1.00000 10.00000 10.00000 0.00000 14.99993 -36.00000
26 1.00000 10.00000 10.00000 0.00000 14.99993 -35.00000
27 1.00000 10.00000 10.00000 0.00000 14.99993 -34.00000
28 1.00000 10.00000 10.00000 0.00000 14.99993 -33.00000
29 1.00000 9.99999 9.99998 0.00000 14.99990 -32.00000
30 1.00000 9.99999 9.99999 0.00001 14.99991 -31.00000
31 0.99999 9.99994 9.99987 0.00001 14.99972 -30.00000
32 0.99998 9.99989 9.99973 0.00007 14.99952 -29.00000
33 0.99997 9.99983 9.99958 0.00025 14.99929 -28.00000
34 0.99980 9.99869 9.99673 0.00023 14.99501 -27.00000
35 0.99982 9.99882 9.99706 0.00228 14.99552 -26.00000
36 0.99848 9.98987 9.97468 0.00208 14.96196 -25.00000
37 0.99862 9.99070 9.97689 0.01654 14.96540 -24.00000
38 0.98965 9.93141 9.82857 0.01511 14.74290 -23.00000
39 0.98994 9.93077 9.83089 0.09434 14.75067 -22.00000
40 0.96048 9.73635 9.35154 0.10614 14.03265 -21.00000
41 0.94729 9.64314 9.13489 0.22795 13.72688 -20.00000
42 0.92858 9.51687 8.83722 0.36219 13.31668 -19.00000
43 0.88410 9.21075 8.14319 0.40569 12.28747 -18.00000
44 0.86856 9.10424 7.90762 0.58334 12.00915 -17.00000
45 0.84777 8.95951 7.59559 0.73331 11.62127 -16.00000
46 0.80170 8.62583 6.91531 0.77048 10.61088 -15.00000
47 0.78551 8.52980 6.70027 0.94461 10.40081 -14.00000
48 0.76956 8.39281 6.45878 1.11127 10.16330 -13.00000
49 0.72772 8.10573 5.89866 1.17294 9.34854 -12.00000
50 0.70716 7.93358 5.61027 1.28551 8.99967 -11.00000
51 0.69716 7.89671 5.50527 1.44648 8.98721 -10.00000
52 0.67841 7.68775 5.21543 1.49895 8.58524 -9.00000
53 0.66366 7.64411 5.07310 1.52963 8.38602 -8.00000
54 0.66272 7.62325 5.05210 1.56000 8.38452 -7.00000
55 0.66338 7.60589 5.04558 1.57740 8.39363 -6.00000
56 0.66483 7.59057 5.04644 1.57395 8.39312 -5.00000
57 0.66562 7.59281 5.05392 1.56228 8.39313 -4.00000
58 0.66652 7.62785 5.08409 1.55166 8.42847 -3.00000
59 0.66669 7.68111 5.12091 1.54293 8.47489 -2.00000
60 0.66513 7.73356 5.14382 1.51090 8.47487 -1.00000
61 0.65147 7.83471 5.10405 1.54063 8.42918 0.00000
62 0.65036 7.81949 5.08548 1.54358 8.40298 1.00000
63 0.65034 7.80526 5.07610 1.54576 8.39107 2.00000
64 0.65080 7.79762 5.07468 1.54735 8.39108 3.00000
65 0.65583 7.78186 5.10358 1.53769 8.43069 4.00000
66 0.68089 7.69643 5.24046 1.48121 8.60758 5.00000
67 0.92725 5.31404 4.92742 1.63829 8.63545 6.00000
68 1.41717 3.68566 5.22322 1.48923 9.40629 7.00000
69 1.74176 2.89699 5.04585 1.54815 9.65604 8.00000
70 2.03016 2.58020 5.23824 1.57113 10.36299 9.00000
71 2.17146 2.38683 5.18292 1.56674 10.43944 10.00000

D-6

Appendix D

72 2.20853 2.34843 5.18657 1.55193 10.43942 11.00000
73 2.25440 2.31318 5.21484 1.52026 10.42741 12.00000
74 2.25398 1.05637 2.38104 1.18232 5.14694 13.00000
75 1.15678 0.86613 1.00192 0.00195 1.50288 14.00000
76 1.00002 0.99998 1.00000 0.00000 1.49999 15.00000
77 1.00000 1.00000 1.00000 0.00000 1.49999 16.00000
78 1.00000 1.00000 1.00000 0.00000 1.49999 17.00000
79 1.00000 1.00000 1.00000 0.00000 1.49999 18.00000
80 1.00000 1.00000 1.00000 0.00000 1.49999 19.00000
81 1.00000 1.00000 1.00000 0.00000 1.49999 20.00000
82 1.00000 1.00000 1.00000 0.00000 1.49999 21.00000
83 1.00000 1.00000 1.00000 0.00000 1.49999 22.00000
84 1.00000 1.00000 1.00000 0.00000 1.49999 23.00000
85 1.00000 1.00000 1.00000 0.00000 1.49999 24.00000
86 1.00000 1.00000 1.00000 0.00000 1.49999 25.00000
87 1.00000 1.00000 1.00000 0.00000 1.49999 26.00000
88 1.00000 1.00000 1.00000 0.00000 1.49999 27.00000
89 1.00000 1.00000 1.00000 0.00000 1.49999 28.00000
90 1.00000 1.00000 1.00000 0.00000 1.49999 29.00000
91 1.00000 1.00000 1.00000 0.00000 1.49999 30.00000
92 1.00000 1.00000 1.00000 0.00000 1.49999 31.00000
93 1.00000 1.00000 1.00000 0.00000 1.49999 32.00000
94 1.00000 1.00000 1.00000 0.00000 1.49999 33.00000
95 1.00000 1.00000 1.00000 0.00000 1.49999 34.00000
96 1.00000 1.00000 1.00000 0.00000 1.49999 35.00000
97 1.00000 1.00000 1.00000 0.00000 1.49999 36.00000
98 1.00000 1.00000 1.00000 0.00000 1.49999 37.00000
99 1.00000 1.00000 1.00000 0.00000 1.49999 38.00000
100 1.00000 1.00000 1.00000 0.00000 1.49999 39.00000

Conservation Sums
100.00002 618.58447 45.00003 959.99567

LCPFCT Test # 3 - Bursting Diaphragm: Step = 200 NX =100 DT = 0.050

I Density Temperature Pressure Velocity Energy Interfaces

1 1.00000 10.00000 10.00000 0.00000 14.99993 -60.00000
2 1.00000 10.00000 10.00000 0.00000 14.99993 -59.00000
3 1.00000 10.00000 10.00000 0.00000 14.99993 -58.12500
4 1.00000 10.00000 10.00000 0.00000 14.99993 -57.12500
5 1.00000 10.00000 10.00000 0.00000 14.99993 -56.12500
6 1.00000 10.00000 10.00000 0.00000 14.99993 -55.12500
7 1.00000 10.00000 10.00000 0.00000 14.99992 -54.12500
8 1.00000 10.00000 10.00000 0.00000 14.99992 -53.12500
9 1.00000 9.99998 9.99995 0.00000 14.99985 -52.12500
10 1.00000 9.99998 9.99996 0.00003 14.99986 -51.12500
11 0.99998 9.99985 9.99962 0.00003 14.99936 -50.12500
12 0.99998 9.99985 9.99962 0.00022 14.99936 -49.12500
13 0.99990 9.99934 9.99835 0.00034 14.99746 -48.12500
14 0.99971 9.99804 9.99512 0.00065 14.99261 -47.12500
15 0.99968 9.99785 9.99464 0.00369 14.99189 -46.12500
16 0.99760 9.98400 9.96009 0.00406 14.94006 -45.12500
17 0.99689 9.97919 9.94812 0.02219 14.92234 -44.12500
18 0.98951 9.92987 9.82568 0.03272 14.73898 -43.12500
19 0.98341 9.88910 9.72506 0.07242 14.59009 -42.12500
20 0.97335 9.82158 9.55989 0.11805 14.34654 -41.12500
21 0.95750 9.71456 9.30166 0.15631 13.96412 -40.12500
22 0.94812 9.65114 9.15047 0.23294 13.75137 -39.12500
23 0.93204 9.54183 8.89338 0.28739 13.37850 -38.12500
24 0.91363 9.41560 8.60241 0.33418 12.95457 -37.12500

D-7

Appendix D

25 0.90596 9.36289 8.48237 0.42965 12.80711 -36.12500
26 0.88679 9.23072 8.18576 0.47745 12.37965 -35.12500
27 0.86797 9.09940 7.89798 0.52698 11.96743 -34.12500
28 0.86217 9.05890 7.81035 0.63439 11.88896 -33.12500
29 0.84276 8.92297 7.51994 0.67994 11.47467 -32.12500
30 0.82269 8.78013 7.22329 0.71973 11.04796 -31.12500
31 0.81802 8.74870 7.15666 0.83227 11.01824 -30.12500
32 0.80185 8.63083 6.92063 0.89444 10.70164 -29.12500
33 0.77902 8.46884 6.59740 0.92035 10.22599 -28.12500
34 0.77111 8.41151 6.48617 1.02204 10.13195 -27.12500
35 0.76143 8.34473 6.35395 1.11207 10.00170 -26.12500
36 0.73882 8.16852 6.03510 1.14566 9.53747 -25.12500
37 0.72447 8.07598 5.85077 1.20772 9.30446 -24.12500
38 0.71897 8.02844 5.77222 1.31747 9.28225 -23.12500
39 0.70355 7.90964 5.56482 1.37106 9.00846 -22.12500
40 0.68684 7.78385 5.34622 1.40380 8.69604 -21.12500
41 0.68161 7.75109 5.28326 1.46901 8.66030 -20.12500
42 0.67739 7.71643 5.22707 1.51275 8.61565 -19.12500
43 0.67053 7.65705 5.13427 1.52826 8.48440 -18.12500
44 0.66758 7.64227 5.10184 1.53396 8.43814 -17.12500
45 0.66684 7.63888 5.09395 1.54507 8.43684 -16.12500
46 0.66625 7.63422 5.08632 1.55192 8.43176 -15.12500
47 0.66625 7.63087 5.08408 1.55164 8.42812 -14.12500
48 0.66627 7.63346 5.08594 1.54856 8.42773 -13.12500
49 0.66628 7.63585 5.08764 1.54607 8.42774 -12.12500
50 0.66724 7.64135 5.09858 1.54376 8.44291 -11.12500
51 0.66742 7.64384 5.10165 1.54263 8.44658 -10.12500
52 0.66742 7.64411 5.10183 1.54237 8.44658 -9.12500
53 0.66737 7.64329 5.10090 1.54249 8.44524 -8.12500
54 0.66720 7.64180 5.09862 1.54357 8.44274 -7.12500
55 0.66707 7.64217 5.09789 1.54417 8.44211 -6.12500
56 0.66707 7.64237 5.09802 1.54417 8.44231 -5.12500
57 0.66708 7.64340 5.09879 1.54312 8.44238 -4.12500
58 0.66752 7.65289 5.10846 1.54120 8.45543 -3.12500
59 0.66868 7.65532 5.11893 1.53476 8.46588 -2.12500
60 0.66890 7.65729 5.12197 1.53394 8.46988 -1.12500
61 0.66897 7.65664 5.12203 1.53380 8.46988 -0.12500
62 0.66897 7.65388 5.12018 1.53648 8.46987 0.87500
63 0.66833 7.63431 5.10222 1.53785 8.44358 1.87500
64 0.66651 7.63895 5.09142 1.55425 8.44213 2.87500
65 0.66625 7.58955 5.05655 1.55738 8.39276 3.87500
66 0.66370 7.61252 5.05244 1.56335 8.38968 4.87500
67 0.65725 7.70666 5.06517 1.55243 8.38971 5.87500
68 0.65723 7.76724 5.10488 1.55149 8.44830 6.87500
69 0.65542 7.82882 5.13116 1.53026 8.46410 7.87500
70 0.65385 7.84153 5.12715 1.52963 8.45562 8.87500
71 0.65385 7.83928 5.12568 1.52963 8.45341 9.87500
72 0.65474 7.82925 5.12613 1.53018 8.45568 10.87500
73 0.65613 7.85534 5.15414 1.53019 8.49933 11.87500
74 0.78982 6.55305 5.17573 1.51305 8.66764 12.87500
75 1.03607 4.65581 4.82377 1.65827 8.66014 13.87500
76 1.54017 3.45870 5.32697 1.46551 9.64434 14.87500
77 1.77799 2.80279 4.98333 1.54795 9.60513 15.87500
78 2.03304 2.49940 5.08139 1.52444 9.98437 16.87500
79 2.17834 2.35766 5.13577 1.55075 10.32288 17.87500
80 2.28334 2.25747 5.15459 1.55524 10.49328 18.87500
81 2.34451 2.18807 5.12996 1.54653 10.49866 19.87500
82 2.38527 2.14067 5.10608 1.54237 10.49624 20.87500
83 2.41726 2.10460 5.08736 1.54032 10.49859 21.87500
84 2.43101 2.09506 5.09311 1.53851 10.51675 22.87500
85 2.43224 2.09415 5.09348 1.53812 10.51730 23.87500

D-8

Appendix D

86 2.43350 2.09330 5.09403 1.53723 10.51626 24.87500
87 2.43284 1.76175 4.28607 1.39070 8.78168 25.87500
88 1.13769 0.98511 1.12075 0.08531 1.68525 26.87500
89 1.00005 1.00002 1.00007 0.00006 1.50009 27.87500
90 1.00000 1.00000 1.00000 0.00000 1.49999 28.87500
91 1.00000 1.00000 1.00000 0.00000 1.49999 29.87500
92 1.00000 1.00000 1.00000 0.00000 1.49999 30.87500
93 1.00000 1.00000 1.00000 0.00000 1.49999 31.87500
94 1.00000 1.00000 1.00000 0.00000 1.49999 32.87500
95 1.00000 1.00000 1.00000 0.00000 1.49999 33.87500
96 1.00000 1.00000 1.00000 0.00000 1.49999 34.87500
97 1.00000 1.00000 1.00000 0.00000 1.49999 35.87500
98 1.00000 1.00000 1.00000 0.00000 1.49999 36.87500
99 1.00000 1.00000 1.00000 0.00000 1.49999 38.00000
100 1.00000 1.00000 1.00000 0.00000 1.49999 39.00000

Conservation Sums
100.00005 597.52051 90.34889 961.68964

LCPFCT Test # 3 - Bursting Diaphragm: Step =1600 NX =100 DT = 0.050

I Density Temperature Pressure Velocity Energy Interfaces

1 0.99906 9.99370 9.98426 0.00002 14.97631 -60.00000
2 0.99906 9.99370 9.98426 0.00003 14.97631 -59.00000
3 0.99905 9.99367 9.98419 0.00006 14.97621 -58.12500
4 0.99900 9.99332 9.98330 0.00029 14.97488 -57.12500
5 0.99878 9.99189 9.97973 0.00118 14.96952 -56.12500
6 0.99824 9.98827 9.97068 0.00342 14.95596 -55.12500
7 0.99679 9.97859 9.94652 0.00937 14.91974 -54.12500
8 0.99297 9.95316 9.88321 0.02499 14.82505 -53.12500
9 0.98515 9.90085 9.75378 0.05718 14.63221 -52.12500
10 0.97309 9.82000 9.55575 0.10709 14.33913 -51.12500
11 0.95842 9.72114 9.31697 0.16837 13.98897 -50.12500
12 0.94323 9.61813 9.07207 0.23254 13.63353 -49.12500
13 0.92872 9.51927 8.84071 0.29445 13.30126 -48.12500
14 0.91508 9.42587 8.62538 0.35325 12.99511 -47.12500
15 0.90196 9.33563 8.42033 0.41035 12.70638 -46.12500
16 0.88900 9.24609 8.21978 0.46727 12.42667 -45.12500
17 0.87605 9.15614 8.02122 0.52474 12.15238 -44.12500
18 0.86311 9.06586 7.82484 0.58271 11.88373 -43.12500
19 0.85026 8.97572 7.63169 0.64088 11.62208 -42.12500
20 0.83754 8.88610 7.44247 0.69900 11.36827 -41.12500
21 0.82497 8.79707 7.25734 0.75703 11.12235 -40.12500
22 0.81254 8.70859 7.07610 0.81501 10.88396 -39.12500
23 0.80024 8.62059 6.89854 0.87296 10.65268 -38.12500
24 0.78806 8.53303 6.72458 0.93092 10.42830 -37.12500
25 0.77602 8.44599 6.55425 0.98883 10.21072 -36.12500
26 0.76411 8.35951 6.38759 1.04668 9.99990 -35.12500
27 0.75235 8.27367 6.22472 1.10439 9.79584 -34.12500
28 0.74076 8.18860 6.06578 1.16189 9.59863 -33.12500
29 0.72936 8.10454 5.91116 1.21899 9.40859 -32.12500
30 0.71822 8.02194 5.76155 1.27539 9.22641 -31.12500
31 0.70743 7.94155 5.61813 1.33057 9.05338 -30.12500
32 0.69715 7.86451 5.48275 1.38369 8.89147 -29.12500
33 0.68762 7.79281 5.35853 1.43338 8.74414 -28.12500
34 0.67931 7.72987 5.25095 1.47715 8.61751 -27.12500
35 0.67292 7.68146 5.16899 1.51101 8.52163 -26.12500
36 0.66923 7.65318 5.12172 1.53073 8.46659 -25.12500
37 0.66810 7.64466 5.10738 1.53670 8.44987 -24.12500
38 0.66805 7.64429 5.10673 1.53703 8.44917 -23.12500

D-9

Appendix D

39 0.66805 7.64435 5.10683 1.53701 8.44931 -22.12500
40 0.66805 7.64437 5.10685 1.53701 8.44934 -21.12500
41 0.66805 7.64436 5.10684 1.53704 8.44936 -20.12500
42 0.66805 7.64433 5.10683 1.53706 8.44936 -19.12500
43 0.66804 7.64422 5.10664 1.53715 8.44915 -18.12500
44 0.66794 7.64347 5.10538 1.53771 8.44773 -17.12500
45 0.66783 7.64261 5.10395 1.53833 8.44609 -16.12500
46 0.66782 7.64251 5.10379 1.53840 8.44590 -15.12500
47 0.66782 7.64256 5.10383 1.53834 8.44590 -14.12500
48 0.66798 7.64378 5.10588 1.53762 8.44842 -13.12500
49 0.66813 7.64483 5.10772 1.53685 8.45056 -12.12500
50 0.66814 7.64488 5.10783 1.53677 8.45066 -11.12500
51 0.66811 7.64466 5.10749 1.53685 8.45021 -10.12500
52 0.66793 7.64356 5.10540 1.53781 8.44784 -9.12500
53 0.66791 7.64341 5.10511 1.53799 8.44758 -8.12500
54 0.66791 7.64350 5.10519 1.53799 8.44768 -7.12500
55 0.66811 7.64445 5.10737 1.53701 8.45019 -6.12500
56 0.66856 7.64806 5.11315 1.53465 8.45696 -5.12500
57 0.66861 7.64857 5.11391 1.53437 8.45789 -4.12500
58 0.66861 7.64852 5.11387 1.53441 8.45787 -3.12500
59 0.66845 7.64767 5.11209 1.53507 8.45568 -2.12500
60 0.66775 7.64231 5.10317 1.53904 8.44555 -1.12500
61 0.66697 7.63552 5.09266 1.54296 8.43289 -0.12500
62 0.66678 7.63463 5.09065 1.54424 8.43097 0.87500
63 0.66678 7.63458 5.09062 1.54438 8.43107 1.87500
64 0.66680 7.63467 5.09077 1.54435 8.43128 2.87500
65 0.66703 7.63669 5.09391 1.54308 8.43496 3.87500
66 0.66769 7.64179 5.10233 1.53938 8.44457 4.87500
67 0.66857 7.64834 5.11342 1.53482 8.45755 5.87500
68 0.66913 7.65279 5.12070 1.53144 8.46567 6.87500
69 0.66932 7.65369 5.12280 1.53080 8.46839 7.87500
70 0.66935 7.65379 5.12304 1.53082 8.46879 8.87500
71 0.66935 7.65373 5.12300 1.53088 8.46879 9.87500
72 0.66924 7.65305 5.12169 1.53149 8.46733 10.87500
73 0.66890 7.64983 5.11700 1.53349 8.46196 11.87500
74 0.66838 7.64725 5.11129 1.53616 8.45551 12.87500
75 0.66738 7.64728 5.10365 1.53833 8.44510 13.87500
76 0.66728 7.64508 5.10144 1.54187 8.44531 14.87500
77 0.66728 7.62649 5.08904 1.54161 8.42644 15.87500
78 0.66843 7.60479 5.08329 1.54862 8.42643 16.87500
79 0.67474 7.53155 5.08187 1.54372 8.42675 17.87500
80 1.09444 4.61876 5.05496 1.55191 8.90033 18.87500
81 2.00489 2.58898 5.19062 1.52310 10.11138 19.87500
82 2.32824 2.19679 5.11465 1.53662 10.42066 20.87500
83 2.34057 2.18357 5.11081 1.53809 10.43474 21.87500
84 2.34058 2.18359 5.11085 1.53811 10.43488 22.87500
85 2.34057 2.18359 5.11084 1.53810 10.43485 23.87500
86 2.34057 2.18358 5.11084 1.53812 10.43491 24.87500
87 2.34131 2.18284 5.11070 1.53860 10.43731 25.87500
88 2.34447 2.17930 5.10929 1.53847 10.43843 26.87500
89 2.34484 2.17887 5.10910 1.53834 10.43814 27.87500
90 2.34498 2.17824 5.10793 1.53878 10.43814 28.87500
91 2.34752 2.17635 5.10903 1.53940 10.44501 29.87500
92 2.34828 2.17718 5.11263 1.53984 10.45292 30.87500
93 2.34827 2.17718 5.11261 1.53983 10.45286 31.87500
94 2.34412 2.17607 5.10096 1.53640 10.41807 32.87500
95 1.89018 1.92088 3.63081 1.15993 6.71776 33.87500
96 1.05977 1.11000 1.17635 0.11801 1.77189 34.87500
97 1.00002 1.00002 1.00004 0.00003 1.50006 35.87500
98 1.00000 1.00000 1.00000 0.00000 1.49999 36.87500
99 1.00000 1.00000 1.00000 0.00000 1.49999 38.00000

D-10

Appendix D

100 1.00000 1.00000 1.00000 0.00000 1.49999 39.00000

Conservation Sums
99.96184 585.24878 116.32616 962.41534

D-11

Appendix E

C===

Program FAST2D

C---
c
c BURSTING DIAPHRAGM "MUZZLE FLASH" - LCPFCT TEST # 4 August 1992
c
c The problem begins with 1000:1 pressure and 100:1 density ratios
c across a diaphragm inside a solid cylindrical barrel. The ideal wall
c of the barrel is 10 cells thick (1.0 cm) with its inner radius given
c as 1.5 cm and its outer radius of 2.5 cm. The run starts at time
c t = 0.0 when the diaphragm at interface J = 11 (inside the barrel) is
c ruptured. The flow then expands upward in a 1D manner, spilling out
c of the barrel in a 2D flow which eventually reaches the boundaries at
c R = 4.0 cm and Z = 4.0 cm where a very simple extrapolative outflow
c condition is expressed through the LCPFCT boundary conditions values.
c The outflow condition used here includes a slow relaxation to ambient
c conditions far from the origin.
c
C---

Implicit NONE

Integer NPT, I, J, IJ
Parameter (NPT = 202)
Integer NR, NRP, MR, IALFR, BC_AXIS, BC_WALL, BC_OUTF
Integer NZ, NZP, MZ, IALFZ, LOUT, MAXSTP, IPRINT
Integer ICIN, ICOUT, JCTOP, JSTEP, ISTEP
Real DR, DZ, DT, TIME
Real COURANT, DTNEW, VTYPICAL, RELAX
Real DTMAX, VZMAX, R(NPT), Z(NPT)
Real RHO(40,40), RVR(40,40), RVZ(40,40), ERG(40,40)

Real RHO_IN, PRE_IN, VEL_IN, GAMMA0
Real RHOAMB, PREAMB, VELAMB, GAMMAM
Real RHON(NPT), RVRN(NPT), RVTN(NPT), ERGN(NPT)
Common / ARRAYS / RHON, RVRN, RVTN, ERGN, RELAX,

& RHO_IN, PRE_IN, VEL_IN, GAMMA0,
& RHOAMB, PREAMB, VELAMB, GAMMAM

1000 Format (’1’, /, ’ LCPFCT Test # 4 - FAST2D Barrel Explosion:’,
1 ’ Step =’, I4, /, 5X, I3, ’ x’, I3 ’ Uniform Grid.’,
2 ’ Time=’, 1PE12.4, ’ and DT =’, E12.4)

1005 Format (’ After step ’, I5, ’ TIME = ’, 1PE12.4,
& ’ and timestep DT = ’, E12.4)

1010 Format (1X, /, ’ Fluid variables on selected lines ’,
1 /, ’ I, J’, ’ RHO axis VZ PRE ’,
2 ’ RHO top VR PRE ’,
3 ’ RHO wall VZ PRE ’, /)

1011 Format (I3, 1X, 3(1X, F8.2, F8.2, F8.2))

c The 2D barrel explosion program control parameters are specified.
c (Change here to run other cases) . . .
C---

NR = 40 ! Number of cells in the first (radial R) direction
IALFR = 2 ! Sets cylindrical coordinates in the R direction
DR = 0.1 ! Cell size (e.g., cm) in the radial direction
NZ = 40 ! Number of cells in the second (axial Z) direction
IALFZ = 1 ! Sets Cartesian coordinates in the Z direction
DZ = 0.1 ! Cell size (e.g., cm) in the axial direction

E-1

Appendix E

LOUT = 11 ! Logical unit number of printed output device
BC_AXIS = 1 ! Cylindrical axis set as an impermeable wall
BC_OUTF = 2 ! Outer boundaries set as extrapolative outflow
BC_WALL = 1 ! Walls of the barrel set as an ideal solid wall
MAXSTP = 401 ! Maximum number of timesteps of length DT
IPRINT = 25 ! Initial frequency of validation printout results
COURANT = 0.4 ! Approximate maximum Cournat number allowed
DTMAX = 2.0E-7 ! Maximum timestep allowed in the computation
DT = 1.0E-9 ! Initial (small guess) for starting timestep

c Initialize the test problem geometry, a cylindrical shell JCTOP cells
c high in Z (indexed by J) which extends from the left of cell ICIN to
c the right of cell ICOUT in X (indexed by I).
C---

ICIN = 16 ! Number of the innermost radial cell in the barrel
ICOUT = 25 ! Number of the outermost radial cell in the barrel
JCTOP = 20 ! Number of the uppermost axial cell in the barrel
GAMMA0 = 1.4 ! Gas constant
RHOAMB = 0.00129 ! Initialization and relaxation BCN = 2
PREAMB = 1.013E+6 ! Initialization and relaxation BCN = 2
VELAMB = 0.0 ! Initialization and relaxation BCN = 2
RHO_IN = 100.0*RHOAMB ! Initialization and relaxation BC1 = 2
PRE_IN = 1000.0*PREAMB ! Initialization and relaxation BC1 = 2
VEL_IN = 0.0 ! Initialization and relaxation BC1 = 2
RELAX = 0.002 ! Relaxation rate, used when BC1 or BCN = 2
GAMMAM = GAMMA0 - 1.0

c Determine the cell interface locations, here a uniform grid . . .
C---

NRP = NR + 1
NZP = NZ + 1
Do 100 I = 1, NRP

100 R(I) = DR*FLOAT(I-1)
Do 110 J = 1, NZP

110 Z(J) = DZ*FLOAT(J-1)

c Fill the arrays with air at STP and behind the diaphragm increase the
c density by 100 to 1 and the pressure by 1000 to 1 . . .
C---

Do 200 J = 1, NZ
Do 200 I = 1, NR

RHO(I,J) = RHOAMB
RVR(I,J) = 0.0
RVZ(I,J) = 0.0

200 ERG(I,J) = PREAMB/GAMMAM
Do 210 J = 1, JCTOP/2
Do 210 I = 1, ICIN - 1

ERG(I,J) = PRE_IN/GAMMAM
210 RHO(I,J) = RHO_IN

c Mark the unused cells inside the cylindrical ’barrel’ so they will
c show up distinctly compared to ambient values in the plots. This
c has no effect as the simulation does not access these values . . .
C---

Do 220 J = 1, JCTOP
Do 220 I = ICIN, ICOUT

ERG(I,J) = 20.0*ERG(I,J)
220 RHO(I,J) = 20.0*RHO(I,J)

c Begin loop over the timesteps . . .
C---

E-2

Appendix E

TIME = 0.0
Do 9999 ISTEP = 1, MAXSTP

c Compute the next timestep based on a ’Courant’ number COURANT . . .
C---

VZMAX = 0.0
Do 240 J = 1, NZ
Do 240 I = 1, NR

VTYPICAL = ERG(I,J)/RHO(I,J)
240 VZMAX = AMAX1 (VTYPICAL, VZMAX)

VZMAX = SQRT (VZMAX)
DTNEW = COURANT*AMIN1(DR,DZ)/VZMAX
DT = AMIN1 (DTMAX, 1.25*DT, DTNEW)

c The results are printed when required . . .
C---

JSTEP = ISTEP - 1
If (MOD(JSTEP,5) .eq. 0) Write (6, 1005) JSTEP, TIME, DT
If (MOD(JSTEP,IPRINT) .eq. 0) Then

Write (LOUT, 1000) ISTEP, NR, NZ, TIME, DT
If (ISTEP .ge. 4*IPRINT) IPRINT = 2*IPRINT
Write (LOUT, 1010)
Do 230 IJ = 1, 40

DIN(1) = RHO(1,IJ)/RHOAMB
DIN(2) = 0.01*RVZ(1,IJ)/RHO(1,IJ)
DIN(3) = (GAMMAM/PREAMB)*(ERG(1,IJ) - 0.5*

& (RVR(1,IJ)**2 + RVZ(1,IJ)**2)/RHO(1,IJ))
DIN(4) = RHO(IJ,40)/RHOAMB
DIN(5) = 0.01*RVR(IJ,40)/RHO(IJ,40)
DIN(6) = (GAMMAM/PREAMB)*(ERG(IJ,40) - 0.5*

& (RVR(IJ,40)**2 + RVZ(IJ,40)**2)/RHO(IJ,40))
DIN(7) = RHO(40,IJ)/RHOAMB
DIN(8) = 0.01*RVZ(40,IJ)/RHO(40,IJ)
DIN(9) = (GAMMAM/PREAMB)*(ERG(40,IJ) - 0.5*

& (RVR(40,IJ)**2 + RVZ(40,IJ)**2)/RHO(40,IJ))
230 Write (LOUT, 1011) IJ, (DIN(I), I = 1, 9)

Write (LOUT, 1011)

c Integrate the fluid equations in the radial direction (indexed by I).
c The outer boundary condition at interface I = NR+1 is an extra-
c polation from the interior cell values with a slow relaxation to
c the known distant ambient conditions . . .
C---

Call RESIDIFF (0.999)
Call MAKEGRID (R, R, 1, NRP, IALFR)
Do 300 J = 1, NZ

c Pick up the data from the 2D arrays in the radial direction, setting
c the temporary, compact 1D arrays for GASDYN . . .
C---

Do 400 I = 1, NR
RHON(I) = RHO(I,J)
RVRN(I) = RVR(I,J)
RVTN(I) = RVZ(I,J)

400 ERGN(I) = ERG(I,J)

c Integrate along the radials inside and outside the cylinder . . .
C---

If (J .le. JCTOP) Then
Call GASDYN (1, ICIN-1, BC_AXIS, BC_WALL, DT)
Call GASDYN (ICOUT+1, NR, BC_WALL, BC_OUTF, DT)

E-3

Appendix E

c Integrate along the radials (indexing in I) above the cylinder
c which reach from the axis to the outer boundary . ..
C---

Else
Call GASDYN (1, NR, BC_AXIS, BC_OUTF, DT)

End If

c Put the data back into the 2D arrays in the radial direction . . .
C---

Do 500 I = 1, NR
RHO(I,J) = RHON(I)
RVR(I,J) = RVRN(I)
RVZ(I,J) = RVTN(I)

500 ERG(I,J) = ERGN(I)
300 Continue ! End loop integrating the NZ rows.

c Integrate along the axials (indexing in J) which reach from the
c lower active J cell (1 or JCTOP+1) to the upper boundary. The
c upper boundary condition at interface J = NZ+1 (BCN = 2) is an
c extrapolation from the interior cell values with a slow relaxation
c to the known distant ambient conditions . . .
C---

Call MAKEGRID (Z, Z, 1, NZP, IALFZ)
Do 600 I = 1, NR

c Pick up the data from the 2D arrays in the axial direction, setting
c the temporary, compact 1D arrays for GASDYN . . .
C---

Do 700 J = 1, NZ
RHON(J) = RHO(I,J)
RVTN(J) = RVR(I,J)
RVRN(J) = RVZ(I,J)

700 ERGN(J) = ERG(I,J)

c Integrate along the axials either from the lower solid boundary at
c interface J = 1 or from the top of the barrel at J = 21 for cells
c with I = ICIN to ICOUT . . .
C---

If (I.ge.ICIN .and. I.le.ICOUT) Then
Call GASDYN (JCTOP+1, NZ, BC_WALL, BC_OUTF, DT)

Else
Call GASDYN (1, NZ, BC_WALL, BC_OUTF, DT)

End If

c Put the data back into the 2D arrays in the axial direction . . .
C---

Do 800 J = 1, NZ
RHO(I,J) = RHON(J)
RVR(I,J) = RVTN(J)
RVZ(I,J) = RVRN(J)

800 ERG(I,J) = ERGN(J)
600 Continue ! End loop integrating the NR columns.

TIME = TIME + DT

9999 Continue ! End of the timestep loop.

Stop
End

E-4

Appendix E

C===

LCPFCT Test # 4 - FAST2D Barrel Explosion: Step = 1

40 x 40 Uniform Grid. Time= 0.0000E+00 and DT = 1.2500E-09

Fluid variables on selected lines

I, J RHO axis VZ PRE RHO top VR PRE RHO wall VZ PRE

1 100.00 0.00 1000.00 1.00 0.00 1.00 1.00 0.00 1.00

2 100.00 0.00 1000.00 1.00 0.00 1.00 1.00 0.00 1.00

3 100.00 0.00 1000.00 1.00 0.00 1.00 1.00 0.00 1.00

4 100.00 0.00 1000.00 1.00 0.00 1.00 1.00 0.00 1.00

5 100.00 0.00 1000.00 1.00 0.00 1.00 1.00 0.00 1.00

6 100.00 0.00 1000.00 1.00 0.00 1.00 1.00 0.00 1.00

7 100.00 0.00 1000.00 1.00 0.00 1.00 1.00 0.00 1.00

8 100.00 0.00 1000.00 1.00 0.00 1.00 1.00 0.00 1.00

9 100.00 0.00 1000.00 1.00 0.00 1.00 1.00 0.00 1.00

10 100.00 0.00 1000.00 1.00 0.00 1.00 1.00 0.00 1.00

11 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

12 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

13 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

14 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

15 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

16 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

17 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

18 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

19 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

20 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

21 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

22 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

23 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

24 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

25 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

26 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

27 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

28 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

29 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

30 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

31 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

32 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

33 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

34 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

35 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

E-5

Appendix E

36 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

37 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

38 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

39 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

40 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

LCPFCT Test # 4 - FAST2D Barrel Explosion: Step = 151

40 x 40 Uniform Grid. Time= 2.5060E-05 and DT = 2.0000E-07

Fluid variables on selected lines

I, J RHO axis VZ PRE RHO top VR PRE RHO wall VZ PRE

1 25.19 30.06 146.86 12.01 0.01 53.98 1.00 0.00 1.00

2 25.28 71.50 147.34 11.99 0.05 53.87 1.00 0.00 1.00

3 25.37 119.77 147.30 11.97 7.40 53.76 1.00 0.00 1.00

4 25.38 165.83 147.59 11.63 10.37 51.75 1.00 0.00 1.00

5 25.36 213.07 146.95 11.41 43.71 50.52 1.00 0.00 1.00

6 25.22 264.63 146.30 10.56 63.09 45.72 1.00 0.00 1.00

7 25.13 311.24 144.66 9.95 114.77 41.94 1.00 0.00 1.00

8 25.10 362.53 144.01 9.36 164.56 38.70 1.00 0.00 1.00

9 25.16 420.76 144.98 8.38 196.37 32.85 1.00 0.00 1.00

10 25.17 467.50 143.35 7.94 258.82 30.28 1.00 0.00 1.00

11 24.95 512.41 140.63 6.95 307.26 25.98 1.00 0.00 1.00

12 24.80 566.81 138.89 6.55 359.17 22.79 1.00 0.00 1.00

13 24.57 620.80 138.12 5.80 410.66 19.67 1.00 0.00 1.00

14 24.09 672.04 136.21 5.28 459.34 17.19 1.00 0.00 1.00

15 23.67 723.80 134.31 4.79 513.13 15.18 1.00 0.00 1.00

16 23.32 773.53 132.10 4.13 597.67 12.89 1.00 0.00 1.00

17 22.94 820.67 129.48 3.57 691.17 9.44 1.00 0.00 1.00

18 22.60 869.17 127.29 2.89 747.93 6.87 1.00 0.00 1.00

19 22.30 918.10 125.13 2.40 818.20 6.47 1.00 0.00 1.00

20 22.14 968.59 123.10 2.14 918.84 5.24 1.00 0.00 1.00

21 22.05 1019.32 121.19 1.77 992.51 3.48 1.00 0.00 1.00

22 21.82 1068.43 118.99 1.39 1033.27 3.07 1.00 0.00 1.00

23 21.54 1117.82 116.80 1.18 1171.59 2.68 1.00 0.00 1.00

24 21.13 1165.29 114.09 0.86 1285.47 1.71 1.00 0.00 1.00

25 20.63 1213.81 111.28 0.75 1279.33 1.46 1.00 0.00 1.00

26 20.21 1262.16 108.56 0.75 1279.10 1.27 1.00 0.00 1.00

27 19.73 1307.89 105.37 1.16 990.03 3.36 1.00 0.00 1.00

28 19.18 1355.07 101.86 1.72 772.98 5.96 1.00 0.00 1.00

29 18.66 1398.05 98.70 1.78 748.22 5.97 1.00 0.00 1.00

30 18.08 1443.14 95.42 1.93 717.76 8.02 1.00 0.00 1.00

E-6

Appendix E

31 17.48 1489.85 89.78 2.41 767.94 8.42 1.00 0.00 1.00

32 16.95 1532.89 86.12 2.73 722.70 9.10 1.00 0.00 1.00

33 16.54 1573.44 83.37 2.77 711.28 9.21 1.00 0.00 1.00

34 16.15 1614.41 80.25 2.77 594.68 4.72 1.00 0.00 1.00

35 15.71 1659.32 73.69 1.11 0.55 1.00 1.00 0.00 1.00

36 14.75 1689.00 65.28 1.00 0.00 1.00 1.00 0.00 1.00

37 13.73 1699.93 63.11 1.00 0.00 1.00 1.00 0.00 1.00

38 13.44 1724.09 61.23 1.00 0.00 1.00 1.00 0.00 1.00

39 12.58 1785.64 56.42 1.00 0.00 1.00 1.00 0.00 1.00

40 12.01 1800.57 53.98 1.00 0.00 1.00 1.00 0.00 1.00

LCPFCT Test # 4 - FAST2D Barrel Explosion: Step = 401

40 x 40 Uniform Grid. Time= 7.5061E-05 and DT = 2.0000E-07

Fluid variables on selected lines

I, J RHO axis VZ PRE RHO top VR PRE RHO wall VZ PRE

1 6.72 10.05 23.15 2.15 2.07 4.60 1.03 1.65 1.05

2 6.72 22.34 23.15 2.14 40.89 4.56 1.05 -18.54 1.06

3 6.72 40.14 23.11 2.12 61.83 4.51 1.24 -67.51 1.36

4 6.71 55.56 23.03 2.09 97.61 4.42 1.39 -101.13 1.59

5 6.68 74.31 22.91 2.05 114.92 4.35 1.42 -116.58 1.64

6 6.65 89.89 22.71 2.03 153.71 4.20 1.42 -116.48 1.64

7 6.62 109.83 22.61 1.96 171.32 4.14 1.42 -119.79 1.65

8 6.59 126.22 22.38 1.93 212.53 3.91 1.43 -125.49 1.67

9 6.54 145.82 22.19 1.86 234.78 3.82 1.43 -129.39 1.67

10 6.49 163.81 21.95 1.79 276.14 3.58 1.43 -132.93 1.67

11 6.47 182.94 21.74 1.76 301.24 3.47 1.42 -135.16 1.66

12 6.38 201.53 21.45 1.67 339.29 3.21 1.40 -136.63 1.64

13 6.35 222.71 21.16 1.60 372.58 3.09 1.38 -137.84 1.63

14 6.27 243.62 20.82 1.51 409.39 2.85 1.33 -129.86 1.55

15 6.18 265.35 20.44 1.47 445.40 2.70 1.26 -115.50 1.44

16 6.08 287.07 19.99 1.39 475.57 2.50 1.22 -104.31 1.38

17 6.00 311.29 19.52 1.26 521.74 2.20 1.17 -99.07 1.34

18 5.86 335.88 18.95 1.17 564.21 1.99 1.13 -80.96 1.27

19 5.73 359.63 18.34 1.08 605.87 1.82 1.08 -68.17 1.19

20 5.59 385.76 17.67 1.01 640.98 1.67 1.06 -52.48 1.15

21 5.45 410.44 16.96 0.95 681.85 1.50 1.01 -42.61 1.07

22 5.27 438.62 16.22 0.87 718.96 1.32 0.98 -30.70 1.04

23 5.06 466.03 15.43 0.80 757.25 1.17 0.96 -26.03 1.02

24 4.88 496.84 14.61 0.72 788.50 1.03 0.92 -25.38 0.97

25 4.67 525.27 13.70 0.66 827.84 0.91 0.91 -16.09 0.97

E-7

Appendix E

26 4.50 552.10 12.99 0.60 862.24 0.79 0.83 -14.48 0.91

27 4.39 568.08 12.58 0.54 901.06 0.70 0.80 5.39 0.89

28 4.18 596.19 11.80 0.49 932.66 0.60 0.71 14.25 0.81

29 3.94 630.70 10.85 0.44 966.35 0.54 0.65 49.67 0.76

30 3.74 661.86 10.05 0.40 1004.08 0.46 0.46 76.73 0.73

31 3.51 691.25 9.21 0.35 1024.00 0.41 0.34 131.56 0.71

32 3.31 718.83 8.47 0.31 1072.45 0.33 0.33 177.88 0.69

33 3.13 744.96 7.83 0.30 1086.04 0.34 0.30 193.65 0.69

34 2.95 767.44 7.25 0.27 1082.46 0.30 0.30 377.07 0.66

35 2.79 787.09 6.68 0.21 1116.14 0.20 0.32 521.96 0.71

36 2.67 808.08 6.27 0.17 1211.24 0.17 0.35 599.63 0.72

37 2.53 831.78 5.79 0.17 1239.07 0.15 0.37 669.38 0.66

38 2.43 844.10 5.46 0.18 1437.65 0.02 0.37 703.18 0.60

39 2.20 886.99 4.74 0.34 922.97 0.48 0.36 722.78 0.56

40 2.15 889.43 4.60 0.36 880.79 0.54 0.36 736.23 0.54

E-8

